广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 300-306.doi: 10.16088/j.issn.1001-6600.2022031008

• 综述 • 上一篇    下一篇

刺激响应型纳米酶及其原位催化增强肿瘤治疗

梁家玮1,2,3, 孙婉莹1,2,3, 罗刘睿麒1,2,3, 蒋邦平1,2,3, 沈星灿1,2,3*   

  1. 1.广西师范大学 化学与药学学院, 广西 桂林 541004;
    2.药用资源化学与药物分子工程教育部重点实验室(广西师范大学), 广西 桂林 541004;
    3.省部共建药用资源化学与药物分子工程国家重点实验室(广西师范大学), 广西 桂林 541004
  • 收稿日期:2022-03-10 修回日期:2022-04-20 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 沈星灿 (1974—), 女, 湖南邵阳人, 广西师范大学教授, 博导。E-mail: xcshen@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(21671046,21977022); 广西自然科学基金创新团队项目(2018GXNSFFA281004); 广西自然科学基金杰出青年基金(2013GXNSFGA019001)

Stimulus-Responsive Nanozymes and Their in Situ Catalytic Enhancement of Tumor Therapy

LIANG Jiawei1,2,3, SUN Wanying1,2,3, LUO-LIU Ruiqi1,2,3, JIANG Bangping1,2,3, SHEN Xingcan1,2,3*   

  1. 1. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi, 541004, China;
    2. Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Ministry of Education of China, Guilin Guangxi 541004, China;
    3. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources(Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2022-03-10 Revised:2022-04-20 Online:2022-09-25 Published:2022-10-18

摘要: 纳米酶是一种具有类酶催化活性的纳米材料。本文综述刺激响应型纳米酶及其在肿瘤微环境中通过调节肿瘤微环境的酸度、升高过氧化氢的浓度、消除抗氧化分子等策略,促进纳米酶在肿瘤细胞内催化产生活性氧物种,提高化学动力学治疗肿瘤效果,并综述纳米酶在内源性刺激化学动力学治疗的基础上,协同外源性刺激的光动力治疗、光热治疗、声动力治疗、放射治疗以及联合免疫治疗,实现肿瘤高效精准治疗的研究进展。

关键词: 纳米酶, 级联催化反应, 刺激响应机制, 催化治疗, 肿瘤治疗, 免疫治疗

Abstract: Nanozyme is a kind of nanomaterial with enzyme-like catalytic activity. Tumor microenvironment has its own unique biochemical characteristics, and this review summarizes that stimulating responsive nanozyme in tumor microenvironment can promote ROS production to enhance chemodynamic therapy in situ, by regulating acidity, increasing H2O2 concentration, changing glucose metabolism, eliminating antioxidants. Based on this, the research progress of nanozyme catalytic therapy synergistic photodynamic therapy, photothermal therapy, sonodynamic therapy, radiotherapy and immunotherapy were further reviewed.

Key words: nanozyme, cascade catalytic reaction, stimulus response mechanism, catalytic treatment, tumor treatment, immunotherapy

中图分类号: 

  • TB383.1
[1]ZHANG S P, CHEN H, WANG L P, et al. A general approach to design dual ratiometric fluorescent and photoacoustic probes for quantitatively visualizing tumor hypoxia levels in vivo[J]. Angewandte Chemie International Edition, 2022, 61(7): e202107076. DOI: 10.1002/anie.202107076.
[2]JIANG B P, ZHANG L, GUO X L, et al. Poly(N-phenylglycine)-based nanoparticles as highly effective and targeted near-infrared photothermal therapy/photodynamic therapeutic agents for malignant melanoma[J]. Small, 2017, 13(8): 1602496. DOI: 10.1002/smll.201602496.
[3]RUAN C P, LIU C J, HU H L, et al. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy[J]. Chemical Science 2019, 10(17): 4699-4706. DOI: 10.1039/c9sc00375d.
[4]ZHANG R F, YAN X Y, FAN K L. Nanozymes inspired by natural enzymes[J]. Accounts of Materials Research, 2021, 2(7): 534-547. DOI: 10.1021/accountsmr.1c00074.
[5]AI Y J, HU Z N, LIANG X P, et al. Recent advances in nanozymes: from matters to bioapplications[J]. Advanced Functional Materials,2022,32(14): 2110432. DOI: 10.1002/adfm.202110432.
[6]PERILLO B, DI DONATO M, PEZONE A, et al. ROS in cancer therapy: the bright side of the moon[J]. Experimental and Molecular Medicine, 2020, 52(2): 192-203. DOI: 10.1038/s12276-020-0384-2.
[7]ZHANG C, BU W B, NI D L, et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction[J]. Angewandte Chemie International Edition, 2016, 55(6): 2101-2106. DOI: 10.1002/anie.201510031.
[8]韩雅静,汪凤林,蒋健晖. 化学动力学治疗在癌症治疗中的应用研究进展[J]分析化学,2021, 49(7): 1121-1132. DOI: 10.19756/j.issn.0253-3820.201734.
[9]TIAN Q W, XUE F F, WANG Y R, et al. Recent advances in enhanced chemodynamic therapy strategies[J]. Nano Today, 2021, 39: 101162. DOI: 10.1016/j.nantod.2021.101162.
[10]CHEN J J, ZHU Y F, WU C T, et al. Nanoplatform-based cascade engineering for cancer therapy[J]. Chemical Society Reviews, 2020, 49(24): 9057-9094. DOI: 10.1039/d0cs00607f.
[11]FU L W, ZHOU X J, HE C L. Polymeric nanosystems for immunogenic cell death-based cancer immunotherapy[J]. Macromolecular Bioscience, 2021, 21(7): 2100075. DOI: 10.1002/mabi.202100075.
[12]MA J, QIU J J, WANG S R. Nanozymes for catalytic cancer immunotherapy[J]. ACS Applied Nano Materials, 2020, 3(6): 4925-4943. DOI: 10.1021/acsanm.0c00396.
[13]ZHOU Y F, FAN S Y, FENG L L, et al. Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy[J]. Advanced Materials, 2021, 33(48): e2104223, DOI: 10.1002/adma.202104223.
[14]LIN T S, ZHANG Q, YUAN A, et al. Synergy of tumor microenvironment remodeling and autophagy inhibition to sensitize radiation for bladder cancer treatment[J]. Theranostics, 2020, 10(17): 7683-7696. DOI: 10.7150/thno.45358.
[15]SUN L, XU Y R, GAO Y, et al. Synergistic amplification of oxidative stress-mediated antitumor activity via liposomal dichloroacetic acid and MOF-Fe2+[J]. Small, 2019, 15(24): 1901156. DOI: 10.1002/smll.201901156.
[16]FU L H, QI C, LIN J, et al. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment[J]. Chemical Society Reviews, 2018, 47(17): 6454-6472. DOI: 10.1039/C7CS00891K.
[17]CHENG Y, DAI J, SUN C L, et al. An intracellular H2O2-responsive AIEgen for the peroxidase-mediated selective imaging and inhibition of inflammatory cells[J]. Angewandte Chemie International Edition, 2018, 57(12): 3123-3127. DOI: 10.1002/anie.201712803.
[18]XIONG H, WANG C, WANG Z H, et al. Self-assembled nano-activator constructed ferroptosis-immunotherapy through hijacking endogenous iron to intracellular positive feedback loop[J]. Journal of Controlled Release, 2021, 332: 539-552. DOI: 10.1016/j.jconrel.2021.03.007.
[19]HUO M F, WANG L Y, CHEN Y, et al. Tumor-selective catalytic nanomedicine by nanocatalyst delivery[J]. Nature Communications, 2017, 8(1): 357. DOI: 10.1038/s41467-017-00424-8.
[20]FU L H, WAN Y L, QI C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy[J]. Advanced Materials, 2021, 33(7): 2006892. DOI: 10.1002/adma.202006892.
[21]ZHANG H J, LIANG X, HAN L, et al. “Non-naked” gold with glucose oxidase-like activity: a nanozyme for tandem catalysis[J]. Small, 2018, 14(44): 1803256. DOI: 10.1002/smll.201803256.
[22]ZHENG N N, FU Y, LIU X J, et al. Tumor microenvironment responsive self-cascade catalysis for synergistic chemo/chemodynamic therapy by multifunctional biomimetic nanozymes[J]. Journal of Materials Chemistry B, 2022, 10(4): 637-645. DOI: 10.1039/d1tb01891d.
[23]DONG S M, DONG Y S, LIU B, et al. Guiding transition metal-doped hollow cerium tandem nanozymes with elaborately regulated multi-enzymatic activities for intensive chemodynamic therapy[J]. Advanced Materials, 2022, 34(7): 2107054. DOI: 10.1002/adma.202107054.
[24]LIU B, BIAN Y L, LIANG S, et al. One-step integration of tumor microenvironment-responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion-interference therapy[J]. ACS Nano, 2022, 16(1): 617-630. DOI: 10.1021/acsnano.1c07893.
[25]WANG X W, ZHONG X Y, LIU Z, et al. Recent progress of chemodynamic therapy-induced combination cancer therapy[J]. Nano Today, 2020, 35: 100946. DOI: 10.1016/j.nantod.2020.100946.
[26]HE Y L, JIN X Y, GUO S W, et al. et al. Conjugated polymer-ferrocence nanoparticle as an NIR-II light powered nanoamplifier to enhance chemodynamic therapy[J]. ACS Applied Materials and Interfaces, 2021, 13(27): 31452-31461. DOI: 10.1021/acsami.1c06613.
[27]LIN L S, HUANG T, SONG J B, et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy[J]. Journal of the American Chemical Society, 2019, 141(25): 9937-9945. DOI: 10.1021/jacs.9b03457.
[28]WU F, DU Y Q, YANG J N, et al. Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death[J]. ACS Nano, 2022, 16(3), 3647-3663. DOI: 10.1021/acsnano.1c06777.
[29]SANG Y J, CAO F F, LI W, et al. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy[J]. Journal of the American Chemical Society, 2020, 142(11): 5177-5183. DOI: 10.1021/jacs.9b12873.
[30]LIU G Y, ZHU J W, GUO H, et al. Mo2C-derived polyoxometalate for NIR-II photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy[J]. Angewandte Chemie International Edition, 2019, 58(51): 18641-18646. DOI: 10.1002/anie.201910815.
[31]WU M Q, DING Y M, LI L L, et al. Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy[J]. Nanoscale, 2019, 11(42): 19658-19683. DOI: 10.1039/c9nr06651a.
[32]SUN Q Q, WANG Z, LIU B,et al. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy[J]. Coordination Chemistry Reviews, 2022, 451: 214267. DOI: 10.1016/j.ccr.2021.214267.
[33]ESFAHANI K, ROUDAIA L, BUHLAIGA N, et al. A review of cancer immunotherapy: from the past, to the present, to the future[J]. Current Oncology, 2020, 27(S2): 87-97. DOI: 10.3747/co.27.5223.
[34]周俊,陈舒曼,邢兵,等. 正常来源CD4+ CD25+细胞在小鼠肺癌模型中的抗肿瘤作用[J].广西师范大学学报(自然科学版), 2022, 40(2): 191-199. DOI: 10.16088/j.issn.1001-6600.2021022202.
[35]CHEN T, HUANG R T, LIANG J W, et al. Natural polyphenol-vanadium oxide nanozymes for synergistic chemodynamic/photothermal therapy[J]. Chemistry-A European Journal, 2020, 26(66): 15159-15169. DOI: 10.1002/chem.202002335.
[36]LIU C H, CAO Y, CHENG Y R, et al. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy[J]. Nature Communications, 2020, 11(1): 1735. DOI: 10.1038/s41467-020-15591-4.
[37]SONG G S, CHENG L, CHAO Y, et al. Emerging nanotechnology and advanced materials for cancer radiation therapy[J]. Advanced Materials, 2017, 29(32): 1700996. DOI: 10.1002/adma.201700996.
[38]CHEN M Z, WANG Z Q, SUO W L, et al. Injectable hydrogel for synergetic low dose radiotherapy, chemodynamic therapy and photothermal therapy[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 757428. DOI: 10.3389/fbioe.2021.757428.
[39]LIANG S, DENG X R, MA P A, et al. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy[J]. Advancer Materials, 2020, 32 (47): 2003214. DOI: 10.1002/adma.202003214.
[40]WANG Z, LIU B, SUN Q Q, et al. Upconverted metal-organic framework janus architecture for near-infrared and ultrasound co-enhanced high performance tumor therapy[J]. ACS Nano, 2021, 15(7): 12342-12357. DOI: 10.1021/acsnano.1c04280.
[41]DUAN X P, CHAN C, LIN W B, et al. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy[J]. Angewandte Chemie International Edition, 2019, 58(3): 670-680. DOI: 10.1002/anie.201804882.
[42]YIN Y F, JIANG X W, SUN L P, et al. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma[J]. Nano Today, 2021, 36: 101009. DOI: 10.1016/j.nantod.2020.101009.
[43]DENG H Z, ZHOU Z J, YANG W J, et al. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy[J]. Nano Letters, 2020, 20(3): 1928-1933. DOI: 10.1021/acs.nanolett.9b05210.
[44]HUANG J, YANG B, PENG Y, et al. Nanomedicine-boosting tumor immunogenicity for enhanced immunotherapy[J]. Advanced Functional Materials, 2021, 31(21): 2011171. DOI: 10.1002/adfm.202011171.
[45]LV W J, CAO M Z, LIU J J, et al. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia[J]. Acta Biomaterialia, 2021, 135: 617-627. DOI: 10.1016/j.actbio.2021.08.015.
[46]HUANG R T, DING Z Y, JIANG B P, et al. Artificial metalloprotein nanoanalogues: in situ catalytic production of oxygen to enhance photoimmunotherapeutic inhibition of primary and abscopal tumor growth[J]. Small, 2020, 16(46): 2004345. DOI: 10.1002/smll.202004345.
[47]TANG G H, HE J Y, LIU J W, et al. Nanozyme for tumor therapy: surface modification matters[J]. Exploration, 2021, 1(1): 75-89. DOI: 10.1002/EXP.20210005.
[48]WILHELM S, TAVARES A J, DAI Q,et al. Analysis of nanoparticle delivery to tumours[J]. Nature Reviews Materials, 2016, 1: 16014.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[7] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[8] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[9] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[10] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发