广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 200-207.doi: 10.16088/j.issn.1001-6600.2021011301

• • 上一篇    下一篇

急性肺损伤模型中Sdr9c7基因的作用研究

贺思诺1,2, 李银玲1,2, 周晶1,2, 周洁1,2, 林万华1,2*, 杨文贤3*   

  1. 1.广西高校干细胞与医药生物技术重点实验室(广西师范大学),广西 桂林 541004;
    2.广西师范大学 生命科学学院,广西 桂林 541006;
    3.中国科学院微生物研究所,北京 100101
  • 收稿日期:2021-01-13 修回日期:2021-03-06 发布日期:2022-05-31
  • 通讯作者: 林万华(1975—),男,江西南康人,广西师范大学副教授,博士。E-mail: lwh@gxnu.edu.cn
    杨文贤(1987—),男,江西鹰潭人,中国科学院微生物研究所助理研究员,博士。E-mail: yangwx@im.ac.cn
  • 基金资助:
    国家自然科学基金(31560248);广西自然科学基金(2016GXNSFAA380176)

Changes of Sdr9c7 Gene Expression in Acute Lung Injury Model

HE Sinuo1,2, LI Yinling1,2, ZHOU Jing1,2, ZHOU Jie1,2, LIN Wanhua1,2*, YANG Wenxian3*   

  1. 1. Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2021-01-13 Revised:2021-03-06 Published:2022-05-31

摘要: 检测了经鼻腔滴注脂多糖(LPS)溶液诱导的急性肺损伤模型小鼠肺组织Sdr9c7基因表达变化,并探讨其在急性肺损伤的作用。取9只雌性C57BL/6小鼠随机分为空白组、第3天组和第7天组,每组3只。第3天组和第7天组小鼠用LPS诱导急性肺损伤模型,第3天组于LPS诱导的第3天终止实验,第7天组于LPS诱导的第7天终止实验,经鼻腔滴注PBS溶液作对照空白组。转染SDR9C7-siRNA至A549细胞并检测敲低表达的效果。采用苏木精-伊红(HE)染色观察小鼠肺组织形态学,并评估病理评分;用实时荧光定量PCR(RT-qPCR)检测各组肺组织和细胞的IL-1β、TNF-α、IL-6和Sdr9c7基因相对表达量。与空白组比较,第3天组和第7天组肺水肿评分、炎症评分、总病理评分以及Sdr9c7、IL-1β、TNF-α和IL-6基因相对表达量均升高(均P<0.05);与第3天组比较,第7天组炎症评分、总病理评分以及Sdr9c7、IL-1β、TNF-α基因相对表达量降低(均P<0.05)。小鼠肺组织Sdr9c7基因相对表达量与病理评分呈正相关(r=0.964,P<0.01)。敲低Sdr9c7基因实验中,SDR9C7-siRNA3效果更明显。SDR9C7-siRNA3敲低Sdr9c7基因对LPS诱导A549细胞影响实验中,RT-qPCR检测IL-1β、TNF-α、IL-6、Sdr9c7基因相对表达量,与对照组比较,诱导组升高(均P<0.05),敲低组和联合组下降(均P<0.05),且敲低组低于联合组(均P<0.05)。结果表明,急性肺损伤模型小鼠肺组织Sdr9c7基因的异常表达与肺损伤病理评分呈正相关,肺损伤机制可能与Sdr9c7基因高表达促进炎症反应作用相关。

关键词: 急性肺损伤模型, 脂多糖, 炎症反应, 敲低, Sdr9c7基因

Abstract: To observe the expression of Sdr9c7 gene in the lung tissue of mice with acute lung injury (ALI) and explore its mechanism. 9 female C57BL/6 mice were randomly divided into blank group, 3rd-day group and 7th-day group, with 3 mice in each group. Acute lung injury model was induced by lipopolysaccharide (LPS). The experiment was terminated on the 3rd day or on the 7th day of LPS induction respectively. PBS solution was intranasal instilled in the blank group as control group. A549 cells were transfected with SDR9C7-siRNA and the effect of knockdown of Sdr9c7 gene expression was verified. A549 cells were divided into control group, induction group, knockdown group and combination group. Hematoxylin eosin (HE) staining was used to observe the morphology of lung tissue and evaluate the pathological score. The relative expression levels of IL-1β, TNF-α, IL-6 and Sdr9c7 genes in lung tissue and cells were detected by real-time quantitative PCR (RT-qPCR). Results showed that compared with the blank group, the pulmonary edema score, inflammation score, total pathological score and the relative expression of Sdr9c7, IL-1β, TNF-α and IL-6 genes in the 3rd and 7th day groups were increased (all P<0.05); compared with the 3rd day group, the inflammation score, total pathological score and the relative expression of Sdr9c7, IL-1β and TNF-α genes in the 7th day group were decreased (all P<0.05). The relative expression of Sdr9c7 gene was positively correlated with pathological score (r=0.964, P<0.01). In the experiment of knockdown of Sdr9c7 gene, the effect of SDR9C7-siRNA3 was more significant. In the experiment of SDR9C7-siRNA3 knockdown in LPS induced A549 cells, the relative expression levels of IL-1β, TNF-α, IL-6 and Sdr9c7 were detected by RT-qPCR. Compared with the control group, the expression levels of IL-1β, TNF-α, IL-6 and Sdr9c7 increased in the induction group (all P<0.05), decreased in the knockdown group and combination group (all P<0.05), and the expression levels of IL-1β, TNF-α, IL-6 and Sdr9c7 in the knockdown group were lower than those in the combination group (all P<0.05). It suggests that the abnormal expression of Sdr9c7 gene in lung tissue of acute lung injury model mice may be related to LPS induced inflammatory response.

Key words: acute lung injury model, lipopolysaccharide, inflammatory response, knockdown, Sdr9c7 gene

中图分类号: 

  • R563
[1] SONG C, LI H T, LI Y, et al. NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization[J]. Experimental Cell Research, 2019, 382(2): 111486. DOI: 10.1016/j.yexcr.2019.06.031.
[2] LU Z B, XIE P, ZHANG D M, et al. 3-Dehydroandrographolide protects against lipopolysaccharide -induced inflammation through the cholinergic anti-inflammatory pathway[J]. Biochemical Pharmacology, 2018, 158: 305-317. DOI: 10.1016/j.bcp.2018.10.034.
[3] TAKEICHI T. SDR9C7 plays an essential role in skin barrier function by dehydrogenating acylceramide for covalent attachment to proteins[J]. Journal of Dermatological Science, 2020, 98(2): 82-87. DOI: 10.1016/j.jdermsci.2020.03.005.
[4] SHIGEHARA Y, OKUDA S, NEMER G, et al. Mutations in SDR9C7 gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis[J]. Human Molecular Genetics, 2016, 25(20): 4484-4493. DOI: 10.1093/hmg/ddw277.
[5] BAUDIβ K, DE PAULA VIEIRA R, CICKO S, et al. C1P attenuates lipopolysaccharide-induced acute lung injury by preventing NF-κB activation in neutrophils[J]. Journal of Immunology, 2016, 196(5): 2319-2326. DOI: 10.4049/jimmunol.1402681.
[6] BERWICK M L, DUDLEY B A, MAUS K, et al. The role of ceramide 1-phosphate in inflammation, cellular proliferation, and wound healing[M]// STIBAN J. Bioactive Ceramids in Health and Disease. Advances in Experimental Medicine and Biology vol 1159. cham: springer, 2019: 65-77. DOI: 10.1007/978-3-030-21162-2_5.
[7] HAIT N C, MAITI A. The Role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer[J]. Mediators of Inflammation, 2017, 2017: 4806541. DOI: 10.1155/2017/4806541.
[8] XIE W, LU Q C, WANG K L, et al. MiR-34b-5p inhibition attenuates lung inflammation and apoptosis in an LPS-induced acute lung injury mouse model by targeting progranulin[J]. Journal of Cellular Physiology, 2018, 233(9): 6615-6631. DOI: 10.1002/jcp.26274.
[9] TURHAN A H, ATICI A, MULŞU N, et al. The effects of pentoxifylline on lung inflammation in a rat model of meconium aspiration syndrome[J]. Experimental Lung Research, 2012, 38(5): 250-255. DOI: 10.3109/01902148.2012.676704.
[10] GABAY C, LAMACCHIA C, PALMER G. IL-1 pathways in inflammation and human diseases[J]. Nature Reviews Rheumatology, 2010, 6(4): 232-241. DOI: 10.1038/nrrheum.2010.4.
[11] 高韵, 吴东, 陈子瑜, 等. 白藜芦醇对TNF-α诱导的人支气管上皮细胞炎症反应的干预作用[J]. 广州中医药大学学报, 2020, 37(6): 1115-1119. DOI: 10.13359/j.cnki.gzxbtcm.2020.06.023.
[12] 周启新, 郝金斗, 刘培辉. IL-6基因多态性对小儿全身炎症反应综合征治疗的指导意义观察[J]. 中国现代药物应用, 2018, 12(12): 221-222. DOI: 10.14164/j.cnki.cn11-5581/r.2018.12.125.
[13] CHEPURNOVA D A, SAMOILOVA E V, ANISIMOV A A, et al. Compounds of IL-6 receptor complex during acute lung injury[J]. Bulletin of Experimental Biology and Medicine, 2018, 164(5): 609-611. DOI: 10.1007/s10517-018-4042-9.
[14] DU Z A, SUN M N, HU Z S. Saikosaponin a ameliorates LPS-induced acute lung injury in mice[J]. Inflammation, 2018, 41(1): 193-198. DOI: 10.1007/s10753-017-0677-3.
[15] ZHONG W J, YANG H H, GUAN X X, et al. Inhibition of glycolysis alleviates lipopolysaccharide-induced acute lung injury in a mouse model[J]. Journal of Cellular Physiology, 2019, 234(4): 4641-4654. DOI: 10.1002/jcp.27261.
[16] TAKEICHI T, HIRABAYASHI T, MIYASAHA Y, et al. SDR9C7 catalyzes critical dehydrogenation of acylceramides for skin barrier formation[J]. The Journal of Clinical Investigation, 2020, 130(2): 890-903. DOI: 10.1172/JCI130675.
[17] SIMPSON J K, MARTINEZ-QUEIPO M, ONOUFRIADIS A, et al. Genotype-phenotype correlation in a large English cohort of patients with autosomal recessive ichthyosis[J]. The British Journal of Dermatology, 2020, 182(3): 729-737. DOI: 10.1111/bjd.18211.
[18] 李应明, 陈华, 伍燕. 小鼠模型中神经酰胺对血小板介导的输血相关急性肺损伤的作用[J]. 中国比较医学杂志, 2020, 30(8): 86-91. DOI: 10.3969/j.issn.
[1] 李银玲, 周洁, 周 晶, 陈俏媛, 曾志棚, 林万华. mSdr9c7基因在C57BL/6J小鼠不同组织中表达水平的研究[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 148-155.
[2] 曾志棚, 周洁, 卢伟敏, 陈俏媛, 贺思诺, 林万华. Sdr9c7+/-小鼠的生长及高脂饲喂条件下血液生理生化指标分析[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 104-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 艾艳, 贾楠, 王媛, 郭静, 潘东东. 多性状多位点遗传关联分析的统计方法研究及其应用进展[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 1 -14 .
[2] 白德发, 徐欣, 王国长. 函数型数据广义线性模型和分类问题综述[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 15 -29 .
[3] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30 -42 .
[4] 张治飞, 段谦, 刘乃嘉, 黄磊. 基于Jackknife互信息的高维非线性回归模型研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 43 -56 .
[5] 杨迪, 方扬鑫, 周彦. 基于MEB和SVM方法的新类别分类研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 57 -67 .
[6] 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68 -81 .
[7] 杜锦丰, 王海荣, 梁焕, 王栋. 基于表示学习的跨模态检索方法研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 1 -12 .
[8] 李慕航, 韩萌, 陈志强, 武红鑫, 张喜龙. 面向复杂高效用模式的挖掘算法综述[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 13 -30 .
[9] 晁睿, 张坤丽, 王佳佳, 胡斌, 张维聪, 韩英杰, 昝红英. 中文多模态知识库构建[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 31 -39 .
[10] 李正光, 陈恒, 林鸿飞. 基于双向语言模型的社交媒体药物不良反应识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 40 -48 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发