广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (5): 147-157.doi: 10.16088/j.issn.1001-6600.2020111201

• 研究论文 • 上一篇    下一篇

基于初始时延与卡顿概率的视频流缓冲阈值确定

文鹏, 王亚青, 唐胜达*   

  1. 广西师范大学 数学与统计学院, 广西 桂林 541006
  • 收稿日期:2020-11-12 修回日期:2021-02-02 出版日期:2021-09-25 发布日期:2021-10-19
  • 通讯作者: 唐胜达(1976―),男,四川蓬溪人,广西师范大学副教授,博士。E-mail: tangsd@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(61761008);广西自然科学基金(2018GXNSFAA281238);广西高校数学与统计模型重点实验室开放课题(2017GXKLM002)

Determination of Video Streaming Buffer Threshold Constrainted with Initial Delay and Hysteresis Probability

WEN Peng, WANG Yaqing, TANG Shengda*   

  1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-11-12 Revised:2021-02-02 Online:2021-09-25 Published:2021-10-19

摘要: 基于随机流体模型(stochastic fluid model, SFM)框架, 提出一种新的IP 网络动态视频流系统的SFM 模型, 分析视频流系统卡顿发生概率与初始缓冲时延之间关系, 从而确定最优缓冲阈值的设置。首先推导视频流系统3个首达时(first passage times, FPTs)的 Laplace-Stieltjes(LST)变换矩阵, 在此基础上得到卡顿发生概率和初始缓冲时延高于给定容忍时间概率; 基于此, 给出最佳缓冲阈值的算法设计; 最后利用数值结果验证解析结论。

关键词: 视频流系统, 随机流体模型, 卡顿概率, 初始缓冲时延

Abstract: This paper proposes a novel stochastic fluid model (SFM) framework to describe the IP network dynamic video streaming system. The goal is to weigh the relationship between the hysteresis probability and the initial buffer delay, and then to determine an optimal buffer threshold setting. Firstly, the Laplace-Stieltjes transform (LST) matrices of the three First Passage Times (FPTs) is derived in the video streaming system, and then the occurrence probability of the hysteresis is obtained as well as the probability that the initial buffer time is higher than the given tolerable time. Based on these results, the control optimization problem of the initial buffer threshold is further constructed, and an algorithm is designed to find the optimal buffer threshold. Finally, a numerical result is provided to confirm the theoretical findings.

Key words: video streaming system, stochastic fluid model (SFM), hysteresis probability, initial buffer delay

中图分类号: 

  • TN919.8
[1] 周个妹, 刘泽斌. 基于云服务的P2P流媒体技术在远程教学视频传输中的应用[J]. 中国教育信息化, 2016(6): 91-94.
[2] 宋瑛瑛, 刘文婧. 移动终端气象流媒体服务的研究与设计[J]. 计算机系统应用, 2014, 23(9):26-31.
[3] 白钢华, 李王辉. 网络视频流识别技术研究[J]. 信息安全与技术, 2014, 5(10): 62-64.
[4] PEREIRA R, PEREIRA E G. Video streaming: Overview and challenges in the internet of things[M]. Pervasive Computing: Next Generation Platforms for Intelligent Data Collection.London: Academic Press, 2016: 417-444.
[5] 程婕, 耿岩. 移动视频业务卡顿现象评估方法研究与演进[J]. 邮电设计技术, 2017(12): 11-15.
[6] HOßFELD T, EGGER S, SCHATZ R, et al. Initial delay vs. interruptions: Between the devil and the deep blue sea[C] // 2012 Fourth International Workshop on Quality of Multimedia Experience. Melbourne: IEEE, 2012: 1-6.
[7] SCHWIND A, MIDOGLU C, ALAY Ö, et al. Dissecting the performance of YouTube video streaming in mobile networks[J]. International Journal of Network Management, 2020, 30(3): e2058.
[8] VEILLON V, DENNINNART C, SALEHI M A. F-FDN: Federation of fog computing systems for low latency video streaming[C] // 2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC). Larnaca: IEEE, 2019: 1-9.
[9] GUO Y S, YU F R, AN J P, et al. Buffer-aware streaming in small scale wireless networks: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6891-6902.
[10] 孙盛杰, 廖宇力, 虞衍聪. 流媒体连续性与实时性的有效平衡机制[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 29-34.
[11] BARMAN N, MARTINI M. QoE modeling for HTTP adaptive video streaming-A survey and open challenges[J]. IEEE Access, 2019, 7:30831-30859.
[12] BOXMA O, ZWART B. Fluid flow models in performance analysis[J]. Computer Communications, 2018, 131: 22-25.
[13] BOSMAN J, van der MEI R, NÚÑEZ-QUEIJA R. A fluid model analysis of streaming media in the presence of time-varying bandwidth[C] // 2012 24th International Teletraffic Congress (ITC 24). Krakow: IEEE, 2012: 1-8.
[14] MARTIN F I V, ALINS-DELGADO J J, AGUILAR-IGARTUA M, et al. Modelling an adaptive-rate video-streaming service using markov-rewards models[C] // First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks. Dallas: IEEE, 2004: 92-99.
[15] BEAN N G, O′REILLY M M. A stochastic two-dimensional fluid model[J]. Stochastic Models, 2013, 29(1): 31-63.
[16] AHN S, RAMASWAMI V. Efficient algorithms for transient analysis of stochastic fluid flow models[J]. Journal of Applied Probability, 2005, 42(2): 531-549.
[17] AHN S, RAMASWAMI V. Transient analysis of fluid models via elementary level-crossing arguments[J]. Stochastic Models, 2006, 22(1): 129-147.
[18] RAMASWAMI V. Passage times in fluid models with application to risk processes[J]. Methodology and Computing in Applied Probability, 2006, 8(4): 497-515.
[19] ABATE J, WHITT W. Numerical inversion of Laplace transforms of probability distributions[J]. ORSA Journal on Computing, 1995, 7(1): 36-43.
[20] BEAN N G, O′REILLY M M, TAYLOR P G. Hitting probabilities and hitting times for stochastic fluid flows[J]. Stochastic Processes and Their Applications, 2005, 115(9): 1530-1556.
[1] 雷芸, 王现会, 王晓云, 孙泽锐, 俞春强, 张显全. 一种JPEG图像的信息隐藏算法[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 48-53.
[2] 张显全, 王现会, 王晓云, 俞春强. 基于分块的JPEG图像信息隐藏算法[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 詹鑫, 陈李璟, 廖广凤, 李兵, 卢汝梅. 萝藦科药用植物中新C21甾体的研究进展(Ⅰ)[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 1 -29 .
[2] 赵东江, 马松艳, 田喜强. CoSe2/C催化剂在电催化氧还原中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 30 -43 .
[3] 官晓金, 赵珂艺, 刘世玲, 李艺, 于方明, 李春明, 刘可慧. 近30年全球锰污染植物修复研究进展——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 44 -57 .
[4] 梁秋芳, 董小燕, 冯平. CYP2D亚家族基因及其进化机制研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 58 -63 .
[5] 许伦辉, 苏楠, 骈宇庄, 林培群. 基于优化极限学习机的公交行程时间预测方法[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 64 -77 .
[6] 翁小雄, 谢志鹏. 基于多层复杂网络的高速公路节点重要性研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 78 -88 .
[7] 武康康, 朱旭飞, 陆叶, 周鹏, 董翠, 戴沁璇, 周闰昌. 基于最小二乘法的LS-FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 89 -99 .
[8] 海涛, 李娜娜, 周文杰, 陈娟, 宋敏. 基于LPWAN物联网的光伏温室智能监控系统设计[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 100 -109 .
[9] 李冰, 李智, 杨溢龙. 基于词嵌入和长短期记忆网络的非功能软件需求分类[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 110 -121 .
[10] 吴玲玉, 蓝洋, 夏海英. 基于卷积神经网络的眼底图像配准研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 122 -133 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发