广西师范大学学报(自然科学版) ›› 2013, Vol. 31 ›› Issue (3): 106-113.

• • 上一篇    下一篇

基于Krause多智能体一致性模型的研究

谢光强1,2, 章云1, 李杨1,2, 曾启杰1   

  1. 1.广东工业大学自动化学院,广东广州510006;
    2.广东工业大学计算机学院,广东广州510006
  • 收稿日期:2013-05-28 出版日期:2013-09-20 发布日期:2018-11-26
  • 通讯作者: 谢光强(1979—),男,广东南雄人,广东工业大学副教授,博士研究生。E-mail:superxgq@163.com
  • 基金资助:
    国家自然科学基金资助项目(U0735003,60974047);广东省自然科学基金资助项目(8351009001000002);广东省教育部科技部产学研结合项目(2012B090600037,2012B091400038)

Research of Krause's Multi-Agent Consensus Model

XIE Guang-qiang1,2, ZHANG Yun1, LI Yang1,2, ZENG Qi-jie1   

  1. 1.Faculty of Automation,Guangdong University of Technology,Guangzhou Guangdong 510006,China;
    2.Faculty of Computer,Guangdong University of Technology,Guangzhou Guangdong 510006,China
  • Received:2013-05-28 Online:2013-09-20 Published:2018-11-26

摘要: 在Krause多智能体一致性模型中,模型里的智能体只进行局部通讯,系统的网络拓扑结构是动态变化的,每个智能体将与它相邻的智能体的状态总和的平均值作为最新时刻的状态值,模型常用于舆论演化行为的研究。本文研究和分析在初始拓扑连通条件下该模型收敛的特性,对收敛的群集数的上界做研究,证明了系统收敛的群集数量与初始区间值之间的关系,给出了更小的一个上界,即收敛的上界为间隔区间值。仿真试验以300个智能体意见值的系统为例,考虑在不同的区间和初始分布拓扑下进行仿真和验证,主要是在5种不同初始拓扑分布及区间范围内进行意见演化,同时初始时刻系统网络是连通的,采用分布式离散算法,得到的实验结果与结论是相吻合的。

关键词: 一致性, 多智能体系统, 舆情动力学, 分布式控制

Abstract: In Krause's multi-agent consensus model,every agent updates its opinion by averaging all agent opinions which are of its neighbors.In this study,the convergence properties of the model with initial connected topology are considered,and a new proof of convergence into clusters of agents in given.It followsthe rule that opinions initially confined to an interval of length L can converge to at most L clusters.The opinions of 300 autonomous agents were simulated in the conditions of five different initial topologies by using the distributed discrete-time algorithm.Simulation results show good agreement with the conclusion.

Key words: consensus, multi-agent system, opinion dynamics, distributed control

中图分类号: 

  • TP301
[1] SZNAJD W K,SZNAJD J.Opinion evolution in closed community[J].International Journal of Modern Physics C Physics and Computer,2000,11(6):1157-1166.
[2] DEFFUANT G,NEAU D,AMBLARD F,et al.Mixing beliefs among interacting agents[J].Advances in Complex Systems,2000,3(4):87-98.
[3] KRAUSE U,STÖCKLER M.Soziale Dynamiken mit vielen Interakteuren.Eine Problemskizze[C]//Proc Modellierung und Simulation von Dynamiken mit vielen interagierenden Akteuren.[S.l.]:Universita¨t Bremen,1997:37-51.
[4] HEGSELMANN R,KRAUSE U.Opinion dynamics and bounded confidence models,analysis,and simulation[J].Artificial Societies and Social Simulation (JASSS),2002,5(3):1-33.
[4] KATIA P S.Multiagent systems[J].AI Magazine,1998,19(2):79-92.
[5] NICHOLAS R J,KATIA S,MICHAEL W.A roadmap of agent research and development[J].Autonomous Agents and Multi-Agent System,1998,1(1):7-38.
[6] JADBABAIE A,LIN Jie,STEPHEN A M.Coordination of groups of mobile autonomous agents using nearest neighbor rules[J].IEEE Trans Automatic Control,2003,48(6):988-1001.
[7] TIAN Yu-ping,LIU Cheng-lin.Consensus of multi-agent systems with diverse input and communication delay[J].IEEE Trans Automatic Control,2008,53(9):2122-2128.
[8] OLFATI-SABER R,MURRAY R M.Consensus problems in networks of agents with switching topology and time-delays[J].IEEE Trans Automatic Control,2004,49(9):1520-1533.
[9] VINCENT D B,JULIEN M H,JOHN N T.On Krause's multi-agent consensus model with state-dependent connectivity[J].IEEE Trans Automatic Control,2009,54(11):2586-2597.
[10] STAUFFER D.Sociophysics simulations Ⅱ:opinion dynamics[C]//Modeling Cooperative Behavior in the Social Sciences:AIP Conference Proceedings 779.Melville,NY:American Institute of Physics,2005:56-68.
[11] JACOBMEIER D.Multidimensional consensus model on a Barabasi-Albert network[J].International Journal of Modern Physics C,2005,16(4):633-646.
[12] MAS M,FLACHE A,HELBING D.Individualization as driving force of clustering phenomena in humans[J].Plos Computational Biology,2010,6(10):1-8.
[13] HENDRICKX J M.Order preservation in a generalized version of Krause's opinion dynamics model[J].Physica A:Statistical Mechanics and its Applications,2008,387(21):5255-5262.
[14] REYNOLDS C.Hocks,herds,and schools:a distributed behavioral model[J].Computer Graphics,1987,21(4):25-34.
[15] VEYSEL G,KEVIN M P.Stabillity analysis of swarms[J].IEEE Trans Automatic Control,2003,48(3):692-697.
[16] 宋晓欣,李德权.复杂多个体系统领导者—跟随一致性研究[J].广西师范大学学报:自然科学版,2010,28(4):9-14.
[17] VICSEK T,CZIROK A,BEN-JACOB E,et al.Novel type of phase transition in a system of self-driven particles[J].Physical Review Letters,1995,75(6):1226-1229.
[18] OLFATI-SABER R.Flocking for multi-agent dynamic systems:algorithms and theory[J].IEEE Trans Automatic Control,2006,51(3):401-420.
[19] CORTéS J.Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions[J].IEEE Trans Automatic Control,2006,51(8):1289-1298.
[20] LIN Zhi-yun,BROUCKE M.Local control strategies for groups of mobile autonomous agents[J].IEEE Trans Automatic Control,2004,49(4):622-629.
[1] 赵金想, 陈燕雁, 覃章荣, 张超英. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95.
[2] 呼文军,马忠军,马梅. 领导—跟随多智能体系统在分布式自适应控制下的滞后一致性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 70-75.
[3] 刘佳丽,王冬翠,莫少锋,李宏周,陈真诚. 慢性吸烟者的脑静息态fMRI局部一致性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 151-155.
[4] 蒙祖强, 许珂, 周石泉. 不完备不一致决策系统的最大分布约简及计算方法[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 89-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发