|
广西师范大学学报(自然科学版) ›› 2013, Vol. 31 ›› Issue (3): 100-105.
马先兵, 孙水发, 覃音诗, 郭青, 夏平
MA Xian-bing, SUN Shui-fa, QIN Yin-shi, GUO Qing, XIA Ping
摘要: 基于Haar-like特征的on-line boosting跟踪算法(HBT)把目标跟踪看作是目标与背景的二分类问题,通过在候选区域搜索最大分类置信度的方法得到目标新的位置。但在获取最大置信度时选用的是区域穷举搜索法,当目标过大或者运动速度过快时,很难确保系统的实时性,且易造成跟踪丢失。本文将粒子滤波算法引入HBT目标跟踪框架中,通过建立目标运动模型,并把HBT目标分类置信度与粒子滤波的观测模型结合起来,提出了基于粒子滤波的on-line boosting目标跟踪算法(PFHBT)。与HBT算法相比,本文算法不仅加快了计算速度,而且很好地解决了目标速度过快造成跟踪丢失的问题,保证了系统的实时性和鲁棒性。
中图分类号:
[1] YILMAZ A,JAVED O,SHAH M.Object tracking:a survey[J].ACM Computing Surveys,2006,38(4):1-45. [2] COLLINS R T,LIU Yan-xi,LEORDEANU M.Online selection of discriminative tracking features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1631-1643. [3] ANDRILUKA M,ROTH S,SCHIELE B.People-tracking-by detection and people-detection-by-tracking[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition.Washington DC:IEEE Computer Society,2008:1-8. [4] SAFFARI A,LEISTNER C,SANTNER J,et al.On-line random forest[C]//Proceedings of IEEE 12th International Conference on Computer Vision Workshops.Washington DC:IEEE Computer Society,2009:1393-1400. [5] BREITENSTEIN M D,REICHLIN F,LEIBE B,et al.Robust tracking by detection using a detector confidence particle filter[C]//Proceedings of IEEE 12th International Conference on Computer Vision.Washington DC:IEEE Computer Society,2009:1515-1522. [6] BABENKO B,YANG Ming-hsuan,BELONGIE S.Robust object tracking with on-line multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632. [7] KALAL Z,MIKOLAJCZYK K,MATAS J.Tracking-learning-detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1409-1422. [8] BRANSON S,PERONA P,BELONGIE S.Strong supervison from weak annotation:interactive training of deformable part models[C]//Proceedings of 2011 IEEE International Conference on Computer Vision.Washington DC:IEEE Computer Society,2011:1832-1839. [9] AVIDAN S.Support vector tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8):1064-1072. [10] GRABNER H,BISCHOF H.On-line boosting and vision[C]//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington DC:IEEE Computer Society,2006:260-267. [11] NUMMIARO K,KOLLER-MEIER E,Van GOOL L.An adaptive color-based particle filter[J].Image and Vision Computing,2003,21(1):99-110. [12] PENG Yu,XU Min,JIN J S,et al.Cascade-based license plate localization with line segment features and haar-like features[C]//Proceedings of Sixth International Conference onImage and Graphics.Washington DC:IEEE Computer Society,2011:1023-1028. [13] HAN Zhen-jun,YE Qi-xiang,LIU Yan-mei.Feature evaluation bt particle filter for adaptive object tracking[C]//Proceedings of SPIE vol 7257:Visual Communications and Image Processing 2009.Bellingham,WA:SPIE,2009:72571G. [14] GRABNER H,LEISTNER C,BISCHOF H.Semi-supervised on-line boosting for robust tracking[C]//Proceedings of the 10th European Conference on Computer Vision.Berlin:Springer-Verlag,2008:234-247. |
[1] | 张灿龙, 李燕茹, 李志欣, 王智文. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12-23. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |