广西师范大学学报(自然科学版) ›› 2013, Vol. 31 ›› Issue (3): 100-105.

• • 上一篇    下一篇

基于粒子滤波的on-line boosting目标跟踪算法

马先兵, 孙水发, 覃音诗, 郭青, 夏平   

  1. 三峡大学智能视觉与图像信息研究所,湖北宜昌443002
  • 收稿日期:2013-06-05 出版日期:2013-09-20 发布日期:2018-11-26
  • 通讯作者: 孙水发(1977—),男,江西黎川人,三峡大学副教授,博士。E-mail:watersun@ctgu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61102155,61272237,61272236);湖北省高等学校优秀中青年科技创新团队计划项目(T201002);湖北省教育厅青年科学基金资助项目(Q20111205)

Object Tracking Algorithm of On-line Boosting Based on Particle Filter

MA Xian-bing, SUN Shui-fa, QIN Yin-shi, GUO Qing, XIA Ping   

  1. Institute of Intelligent Vision and Image Information,China Three Gorges University,Yichang Hubei 443002,China
  • Received:2013-06-05 Online:2013-09-20 Published:2018-11-26

摘要: 基于Haar-like特征的on-line boosting跟踪算法(HBT)把目标跟踪看作是目标与背景的二分类问题,通过在候选区域搜索最大分类置信度的方法得到目标新的位置。但在获取最大置信度时选用的是区域穷举搜索法,当目标过大或者运动速度过快时,很难确保系统的实时性,且易造成跟踪丢失。本文将粒子滤波算法引入HBT目标跟踪框架中,通过建立目标运动模型,并把HBT目标分类置信度与粒子滤波的观测模型结合起来,提出了基于粒子滤波的on-line boosting目标跟踪算法(PFHBT)。与HBT算法相比,本文算法不仅加快了计算速度,而且很好地解决了目标速度过快造成跟踪丢失的问题,保证了系统的实时性和鲁棒性。

关键词: 目标跟踪, on-line boosting, 粒子滤波, 置信度, 运动模型

Abstract: Object tracking is regarded as a classification between object and background in on-line boosting tracking algorithm (HBT) based on the Haar-like feature.The new position of the object is obtained by searching the maximum classification confidence in the candidate region.However,the exhaustive search procedure makes it difficult to ensure real-time property and result in tracking lost easily when the size of the object is too big or the speed of the object is too fast to get the maximum confidence in the candidate regions.In this paper,the particle filter is introduced into the HBT object tracking framework and an algorithm of on-line boosting object tracking based on particle filter (PFHBT) is proposed:the motion of the object is modeled and the object classification confidence is regarded as the observation of particle filter.Experimental results show that the algorithm not only improves the computing speed significantly,but also solves the problem of tracking lost caused by object fast moving effectively.

Key words: object tracking, on-line boosting, particle filter, confidence, motion model

中图分类号: 

  • TP391.41
[1] YILMAZ A,JAVED O,SHAH M.Object tracking:a survey[J].ACM Computing Surveys,2006,38(4):1-45.
[2] COLLINS R T,LIU Yan-xi,LEORDEANU M.Online selection of discriminative tracking features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1631-1643.
[3] ANDRILUKA M,ROTH S,SCHIELE B.People-tracking-by detection and people-detection-by-tracking[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition.Washington DC:IEEE Computer Society,2008:1-8.
[4] SAFFARI A,LEISTNER C,SANTNER J,et al.On-line random forest[C]//Proceedings of IEEE 12th International Conference on Computer Vision Workshops.Washington DC:IEEE Computer Society,2009:1393-1400.
[5] BREITENSTEIN M D,REICHLIN F,LEIBE B,et al.Robust tracking by detection using a detector confidence particle filter[C]//Proceedings of IEEE 12th International Conference on Computer Vision.Washington DC:IEEE Computer Society,2009:1515-1522.
[6] BABENKO B,YANG Ming-hsuan,BELONGIE S.Robust object tracking with on-line multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632.
[7] KALAL Z,MIKOLAJCZYK K,MATAS J.Tracking-learning-detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1409-1422.
[8] BRANSON S,PERONA P,BELONGIE S.Strong supervison from weak annotation:interactive training of deformable part models[C]//Proceedings of 2011 IEEE International Conference on Computer Vision.Washington DC:IEEE Computer Society,2011:1832-1839.
[9] AVIDAN S.Support vector tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8):1064-1072.
[10] GRABNER H,BISCHOF H.On-line boosting and vision[C]//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington DC:IEEE Computer Society,2006:260-267.
[11] NUMMIARO K,KOLLER-MEIER E,Van GOOL L.An adaptive color-based particle filter[J].Image and Vision Computing,2003,21(1):99-110.
[12] PENG Yu,XU Min,JIN J S,et al.Cascade-based license plate localization with line segment features and haar-like features[C]//Proceedings of Sixth International Conference onImage and Graphics.Washington DC:IEEE Computer Society,2011:1023-1028.
[13] HAN Zhen-jun,YE Qi-xiang,LIU Yan-mei.Feature evaluation bt particle filter for adaptive object tracking[C]//Proceedings of SPIE vol 7257:Visual Communications and Image Processing 2009.Bellingham,WA:SPIE,2009:72571G.
[14] GRABNER H,LEISTNER C,BISCHOF H.Semi-supervised on-line boosting for robust tracking[C]//Proceedings of the 10th European Conference on Computer Vision.Berlin:Springer-Verlag,2008:234-247.
[1] 张灿龙, 李燕茹, 李志欣, 王智文. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发