|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 140-151.doi: 10.16088/j.issn.1001-6600.2024090304
许迪, 杨光惠*
XU Di, YANG Guanghui*
摘要: 本文首先建立具有随机成本的动态Cournot博弈模型;然后,基于延迟和梯度调整的异质决策机制建立相应非线性动力系统,进一步求解该系统平衡点并分析Nash均衡点的稳定性;最后,通过数值仿真,研究延迟参数、产品差异参数以及随机变量等对系统稳定性的影响。本文结论如下:①延迟参数对系统稳定性的影响非单调,随着延迟参数的增加,系统稳定区域先增加,当延迟参数增加到一定程度后,系统的稳定性逐渐减弱;②随机变量越大,系统的稳定性也越强;③两局中人对初始值扰动敏感程度不同,具有延迟理性行为的局中人抗初始值扰动能力更强。
中图分类号: O225
| [1] 肖志恒, 刘会家. 基于博弈论-改进TOPSIS的配电网节点脆弱性评估[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 20-30. DOI: 10.16088/j.issn.1001-6600.2022052403. [2] ZHOU W, LI H. Complex dynamical behaviors in a Bertrand game with service factor and differentiated products[J]. Nonlinear Dynamics, 2021, 106: 2739-2759. DOI: 10.1007/s11071-021-06897-z. [3] 赵刘威, 杜建国. 具有异质预期类型和产品的差异度的Cournot博弈动力学分析与控制[J]. 工业技术经济, 2018, 37(1): 65-75. DOI: 10.3969/j.issn.1004-910X.2018.01.009. [4] 陈珊, 董岗. 基于古诺或伯川德竞争的港口合谋罚金威慑[J]. 上海海事大学学报, 2023, 44(3): 91-99. DOI: 10.13340/j.jsmu.2023.03.014. [5] 陈庭强, 沈嘉贤, 杨青浩, 等. 信用多重约束下供应链企业间动态古诺博弈的非线性演化研究[J]. 系统工程理论与实践, 2023, 43(1): 91-109. [6] WANG C, PI J X, ZHOU D, et al. Dynamics of n-person Cournot games with asymmetric information and heterogeneous expectations[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 618: 128691. DOI: 10.1016/j.physa.2023.128691. [7] DENG Z Y, ZHANG J G, XUE R, et al. Global dynamics of a quantum Cournot duopoly with quadratic costs and relative profit maximization[J]. Quantum Information Processing, 2024, 23(7): 257. DOI: 10.1007/s11128-024-04463-1. [8] ZHU D, NI D B. Lyapunov stability in the cournot duopoly game[J]. Discrete Dynamics in Nature and Society, 2023, 2023: 7309724. DOI: 10.1155/2023/7309724. [9] SARAFOPOULOS G, PAPADOPOULOS K. On a bertrand duopoly game with heterogeneous expectations and emissions costs[J]. KnE Social Sciences, 2021: 62-75. DOI: 10.18502/kss.v5i9.9885. [10] AGLIARI A, NAIMZADA A K, PECORA N. Nonlinear dynamics of a Cournot duopoly game with differentiated products[J]. Applied Mathematics and Computation, 2016, 281: 1-15. DOI: 10.1016/j.amc.2016.01.045. [11] ANDALUZ J, JARNE G. Stability of vertically differentiated Cournot and Bertrand-type models when firms are boundedly rational[J]. Annals of Operations Research, 2016, 238(1): 1-25. DOI: 10.1007/s10479-015-2057-4. [12] HUANG Y, LI Q, GUO Y, et al. Research on a Cournot-Bertrand game model with relative profit maximization[J]. Complexity, 2020, 2020(1): 2358125. DOI: 10.1155/2020/2358125. [13] LIU H, DING Z. Dynamics of a Bertrand game with heterogeneous players and different delay structures[J]. International Journal of Nonlinear Science, 2018, 25(2): 109-118. [14] LI Y, LI P, XU C, et al. Exploring dynamics and Hopf bifurcation of a fractional-order Bertrand duopoly game model incorporating both nonidentical time delays[J]. Fractal and Fractional, 2023, 7(5): 352. DOI: 10.3390/fractalfract7050352. [15] ZHANG Y H, ZHANG T, WANG C C. Complex dynamics of Cournot-Bertrand duopoly game with peer-induced fairness and delay decision[J]. Discrete and Continuous Dynamical Systems-B, 2023, 28(4): 2544-2564. DOI: 10.3934/dcdsb.2022180. [16] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40. DOI: 10.16088/j.issn.1001-6600.2018.03.005. [17] ASKAR S S. The impact of cost uncertainty on Cournot oligopoly game with concave demand function[J]. Applied Mathematics and Computation, 2014, 232: 144-149. DOI: 10.1016/j.amc.2014.01.097. [18] 于羽. 基于差异化产品动态寡头博弈的系统动力学分析[J]. 数学的实践与认识, 2016, 46(19): 93-101. |
| No related articles found! |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |