广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (3): 156-169.doi: 10.16088/j.issn.1001-6600.2024071205

• 生态环境科学研究 • 上一篇    下一篇

基于PLUS-InVEST模型的漓江流域生态系统服务多情景评估研究

贾艳红1,2,3*, 黄俊忠3, 吴春竹3, 胡洪文3   

  1. 1.广西生态脆弱区环境过程与修复重点实验室(广西师范大学),广西桂林 541006;
    2.自然资源部地理国情监测重点实验室(武汉大学),湖北武汉 430070;
    3.广西师范大学 环境与资源学院,广西桂林 541006
  • 收稿日期:2024-07-12 修回日期:2024-09-19 出版日期:2025-05-05 发布日期:2025-05-14
  • 通讯作者: 贾艳红(1977—),女,甘肃白银人,广西师范大学副教授,博士。E-mail:j-913@163.com
  • 基金资助:
    国家自然科学基金(42061045);自然资源部地理国情监测重点实验室2024年开放课题(2024NGCM05);广西师范大学珠江—西江经济带发展研究院科学研究基金重点项目(ZX2020002)

Multi-scenario Ecosystem Service Assessment of Lijiang River Basin Based on PLUS-InVEST Model

JIA Yanhong1,2,3*, HUANG Junzhong3, WU Chunzhu3, HU Hongwen3   

  1. 1. Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources(Wuhan University), Wuhan Hubei 430070, China;
    3. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2024-07-12 Revised:2024-09-19 Online:2025-05-05 Published:2025-05-14

摘要: 生态系统服务量化评估可以为科学决策提供信息,对于保护和提高生态系统服务功能,促进区域可持续发展有重要的现实意义。本文以漓江流域为研究区,运用PLUS模型预测土地利用变化,模拟2030年自然发展情景、城镇发展情景、耕地保护情景和生态保护情景下的土地利用结构,进而利用InVEST模型对流域2010年、2020年和2030年的产水服务、碳储存服务和土壤保持服务进行评估和预测。结果表明:1)土地利用方面,2010—2020年间漓江流域建设用地、水域面积增加,耕地、林地和草地面积减少,2030年多情景下漓江流域土地利用呈现出耕地、林地、草地向建设用地转化的现象。自然发展情景和城镇发展情景下建设用地扩张明显;生态保护情景下耕地、林地和草地面积下降趋势及建设用地扩张速率得到有效控制;耕地保护情景有助于降低耕地向建设用地转化。2)生态系统服务方面,2010—2020年间漓江流域生态系统服务空间分布差异显著,产水量和土壤保持量都呈现上升趋势,碳储存量呈现降低趋势。流域中西部为产水量高值区,流域北部和东部为碳储存量和土壤保持量高值集中区。2030年城镇发展情景下产水量持续增加;发展情景差异对碳储存服务产生显著影响,生态保护情景能够提高碳储存量;土壤保持服务呈现出逐年升高趋势,并在自然发展情景下达到最大。3)建设用地扩张会导致产水服务提升,林地和草地减少引起碳储存量下降,建设用地扩张和林地草地减少使流域土壤保持量呈现出先升高再降低的趋势。研究漓江流域生态和社会经济不同发展模式所带来的生态系统服务变化规律可为流域土地利用空间规划和生态系统管理提供科学决策参考。

关键词: 生态系统服务, 多情景模拟, 漓江流域, PLUS模型, InVEST模型

Abstract: The quantification and assessment of ecosystem services provide critical information for scientific decision-making, which holds significant practical importance for the protection and enhancement of these services as well as the promotion of sustainable regional development. This study focuses on the Lijiang River Basin, uses the PLUS model to predict land use changes and simulate land use structures under natural development scenarios, urban development scenarios, cultivated land protection scenarios, and ecological protection scenarios in 2030. Furthermore, the InVEST model is utilized to evaluate water yield service, carbon storage service, and soil conservation service in the basin for 2010, 2020, and 2030. The conclusions were as follows: 1) Regarding land use dynamics from 2010 to 2020 in the Lijiang River Basin, the construction land and water area were increasing, while the cultivated land, forest land, and grassland areas decreased. In 2030, under multiple scenarios, the land use in the Lijiang River Basin showed a trend of conversion from cultivated land, forest land, and grassland to construction land. The expansion of construction land was evident under both natural development scenarios and urban development scenarios; under the ecological protection scenario, the declining trend of cultivated land, forest land, and grassland areas and the expansion rate of construction land were effectively controlled; the cultivated land protection scenario helps to reduce the conversion of cultivated land to construction land. 2) Concerning ecosystem services between 2010-2020 within the basin’s spatial distribution exhibited marked differences: both water yield and soil conservation demonstrated upward trends whereas carbon storage declined. The central and western parts of the basin were high-value areas for water production, while the northern and eastern parts were concentrated areas for high values of carbon storage and soil conservation. In 2030, under the urban development scenario, water production continued to increase; the differences in development scenarios had a significant impact on carbon sequestration services, and the ecological protection scenario could increase carbon storage; soil conservation services showed an increasing trend year by year and reached their maximum under the natural development scenario. 3) The proliferation of constructed environments correlates positively with enhanced water yield services but negatively impacts on forested regions leading to diminished carbon reserves; additionally, fluctuations observed indicate initial increases followed by subsequent decreases in soil conservation volumes due to construction land expansions alongside reductions in forests/grasslands. Exploring how different ecological-socioeconomic developmental modes affect ecosystem service alterations within the Lijiang River Basin can furnish valuable insights for informed spatial planning regarding land utilization along with comprehensive management practices.

Key words: ecosystem services, multi-scenario simulation, Lijiang River Basin, PLUS model, InVEST model

中图分类号:  X171.1

[1] COSTANZA R, DE GROOT R, BRAAT L, et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go?[J]. Ecosystem Services, 2017, 28(Part A): 1-16. DOI: 10.1016/j.ecoser.2017.09.008.
[2]张沐锋,刘万侠,王健恩,等.基于Clue-S模型的石马河流域东莞段生态系统服务价值变化情景模拟[J].水土保持通报,2021,41(1):152-160. DOI: 10.13961/j.cnki.stbctb.2021.01.022.
[3]欧阳志云,王如松.生态系统服务功能、生态价值与可持续发展[J].世界科技研究与发展,2000,22(5):45-50. DOI: 10.3969/j.issn.1006-6055.2000.05.010.
[4]刘娇.湄潭县土地利用结构变化及其驱动因素研究[J].人民珠江,2019,40(2):51-56. DOI: 10.3969/j.issn.1001-9235.2019.02.008.
[5]RAO A, DAGAR V, SOHAG K, et al. Good for the planet, good for the wallet: the ESG impact on financial performance in India[J]. Finance Research Letters, 2023, 56: 104093. DOI: 10.1016/j.frl.2023.104093.
[6]SAHIN G, CABUK S N, CETIN M. The change detection in coastal settlements using image processing techniques: a case study of Korfez[J]. Environmental Science and Pollution Research, 2022, 29(10): 15172-15187. DOI: 10.1007/s11356-021-16660-x.
[7]HASACH ALBASRI N A R, AL-JAWARI S M, Al-MOSHEREFAWI O J. Prediction of urban spatial changes pattern using Markov chain[J]. Civil Engineering Journal, 2022, 8(4): 710-722. DOI: 10.28991/CEJ-2022-08-04-07.
[8]DEPIETRI Y. Planning for urban green infrastructure: addressing tradeoffs and synergies[J]. Current Opinion in Environmental Sustainability, 2022, 54: 101148. DOI: 10.1016/j.cosust.2021.12.001.
[9]WU C F, LIN Y P, CHIANG L C, et al. Assessing highway’s impacts on landscape patterns and ecosystem services: a case study in Puli Township, Taiwan[J]. Landscape and Urban Planning, 2014, 128: 60-71. DOI: 10.1016/j.landurbplan.2014.04.020.
[10]雷军成,刘纪新,雍凡,等.基于CLUE-S和InVEST模型的五马河流域生态系统服务多情景评估[J].生态与农村环境学报,2017,33(12):1084-1093. DOI: 10.11934/j.issn.1673-4831.2017.12.004.
[11]NIU L N, SHAO Q Q, NING J, et al. Ecological changes and the tradeoff and synergy of ecosystem services in western China[J]. Journal of Geographical Sciences, 2022, 32(6): 1059-1075. DOI: 10.1007/s11442-022-1985-6.
[12]XIAO B Q, BAI X Y, ZHAO C W, et al. Responses of carbon and water use efficiencies to climate and land use changes in China’s karst areas[J]. Journal of Hydrology, 2023, 617(Part A): 128968. DOI: 10.1016/j.jhydrol.2022.128968.
[13]梁保平,马艺芳,陈桂南.桂林市主城区建设用地扩张时空动态特征分析[J].广西师范大学学报(自然科学版),2015,33(4):152-159. DOI: 10.16088/j.issn.1001-6600.2015.04.024.
[14]辛文杰,马姜明,王永琪.基于遥感生态指数的桂林市生态环境质量评价[J].广西师范大学学报(自然科学版),2023,41(1):200-212. DOI: 10.16088/j.issn.1001-6600.2021101004.
[15]李何英,何文,王金叶,等.基于PLSR-FLUS-MarKov模型的生态系统服务价值多情景预测:以漓江流域为例[J/OL].水生态学杂志:1-14[2024-03-21].https://doi.org/10.15928/j.1674-3075.202211210468. DOI: 10.15928/j.1674-3075.202211210468.
[16]LIU Y C, JING Y D, HAN S M. Multi-scenario simulation of land use/land cover change and water yield evaluation coupled with the GMOP-PLUS-InVEST model: a case study of the Nansi Lake Basin in China[J]. Ecological Indicators, 2023, 155: 110926. DOI: 10.1016/j.ecolind.2023.110926.
[17]李贤江,石淑芹,蔡为民,等.基于CA-Markov模型的天津滨海新区土地利用变化模拟[J].广西师范大学学报(自然科学版),2018,36(3):133-143. DOI: 10.16088/j.issn.1001-6600.2018.03.019.
[18]LIANG X, GUAN Q F, CLARKE K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85: 101569. DOI: 10.1016/j.compenvurbsys.2020.101569.
[19]王旭,马伯文,李丹,等.基于FLUS模型的湖北省生态空间多情景模拟预测[J].自然资源学报,2020,35(1):230-242. DOI: 10.31497/zrzyxb.20200119.
[20]ZHAO J, SHAO Z, XIA C Y, et al. Ecosystem services assessment based on land use simulation: a case study in the Heihe River Basin, China[J]. Ecological Indicators, 2022, 143: 109402. DOI: 10.1016/j.ecolind.2022.109402.
[21]钟建军,李林,魏识广,等.漓江流域喀斯特森林土壤碳氮磷储量分布特征及其影响因素[J].水土保持学报,2023,37(6):180-186,193. DOI: 10.13870/j.cnki.stbcxb.2023.06.023.
[22]梁士楚,苑晓霞,卢晓明,等.漓江水陆交错带土壤理化性质及其分布特征[J].生态学报,2019,39(8):2752-2761. DOI: 10.5846/stxb201805091026.
[23]樊千涛,马姜明,于名召,等.漓江流域喀斯特综合干扰评价及其空间特征[J].生态学报,2024,44(4):1404-1417. DOI: 10.20103/j.stxb.202301300146.
[24]朱柏露,杨奇勇,谢运球,等.漓江流域土地石漠化空间分布及驱动因子分析[J].广西师范大学学报(自然科学版),2021,39(3):139-150. DOI: 10.16088/j.issn.1001-6600.2020052702.
[25]覃巧婷.基于Sentinel-1和Sentinel-2的漓江流域地表水体动态变化监测研究[D].桂林:桂林理工大学,2022. DOI: 10.27050/d.cnki.gglgc.2022.000266.
[26]庞彩艳,文琦,丁金梅,等.黄河上游流域生态系统服务变化及其权衡协同关系[J].生态学报,2024,44(12):5003-5013. DOI: 10.20103/j.stxb.202306281376.
[27]WANG Y F, YE A Z, PENG D Z, et al. Spatiotemporal variations in water conservation function of the Tibetan Plateau under climate change based on InVEST model[J]. Journal of Hydrology: Regional Studies, 2022, 41: 101064. DOI: 10.1016/j.ejrh.2022.101064.
[28]JIANG L, WANG Z Z, ZUO Q T, et al. Simulating the impact of land use change on ecosystem services in agricultural production areas with multiple scenarios considering ecosystem service richness[J]. Journal of Cleaner Production, 2023, 397: 136485. DOI: 10.1016/j.jclepro.2023.136485.
[29]朱鹏飞.基于InVEST模型的广西沿海地区土地利用/覆被变化的生态效应研究[D].南宁:广西师范学院,2018.
[30]梁民,陈秀庭,徐庆玲,等.基于InVEST模型的河池市森林碳储量估测研究[J].林业调查规划,2024,49(4):43-50. DOI: 10.3969/j.issn.1671-3168.2024.04.008.
[31]卢雅焱,徐晓亮,李基才,等.基于InVEST模型的新疆天山碳储量时空演变研究[J].干旱区研究,2022,39(6): 1896-1906. DOI: 10.13866/j.azr.2022.06.20.
[32]ANESEYEE A B, ELIAS E, SOROMESSA T, et al. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia[J]. Science of the Total Environment, 2020, 728: 138776. DOI: 10.1016/j.scitotenv.2020.138776.
[33]韩晶,崔金芳,杨威,等.基于InVEST模型的低山丘陵区土壤侵蚀变化与驱动因素分析[J].水土保持研究,2022,29(5):32-39. DOI: 10.13869/j.cnki.rswc.2022.05.024.
[34]王乐志.基于InVEST模型的鄱阳湖流域土壤保持和生境质量变化研究[D].南昌:南昌大学,2021. DOI: 10.27232/d.cnki.gnchu.2021.002401.
[35]许月卿,邵晓梅.基于GIS和RUSLE的土壤侵蚀量计算:以贵州省猫跳河流域为例[J].北京林业大学学报,2006,28(4):67-71. DOI: 10.3321/j.issn:1000-1522.2006.04.013.
[36]欧阳晓,贺清云,朱翔.多情景下模拟城市群土地利用变化对生态系统服务价值的影响:以长株潭城市群为例[J].经济地理,2020,40(1):93-102. DOI: 10.15957/j.cnki.jjdl.2020.01.011.
[37]王保盛,廖江福,祝薇,等.基于历史情景的FLUS模型邻域权重设置:以闽三角城市群2030年土地利用模拟为例[J].生态学报,2019,39(12):4284-4298. DOI: 10.5846/stxb201808021649.
[38]张薇,王凤春,万虹麟,等.基于InVEST模型的土壤保持服务时空变化及其影响因素分析:以密云水库上游流域河北张承地区为例[J].地球物理学进展,2022,37(6):2339-2350. DOI: 10.6038/pg2022GG0067.
[39]何毅,唐湘玲,代俊峰.漓江流域生态系统服务价值最大化的土地利用结构优化[J].生态学报,2021,41(13):5214-5222. DOI: 10.5846/stxb202006201612.
[40]杨帅琦,王金叶,李何英.基于生态系统服务价值的漓江流域生态补偿额度测算[J].水生态学杂志,2024,45(5): 20-28. DOI: 10.15928/j.1674-3075.202207030247.
[41]范耘恺,马书明.多情景模拟土地利用变化下的生态系统服务评估及其权衡/协同研究:以辽宁省沈抚地区为例[J].环境科学学报,2023,43(10):419-434. DOI: 10.13671/j.hjkxxb.2023.0085.
[42]郭洪伟,孙小银,廉丽姝,等.基于CLUE-S和InVEST模型的南四湖流域生态系统产水功能对土地利用变化的响应[J].应用生态学报,2016,27(9):2899-2906. DOI: 10.13287/j.1001-9332.201609.039.
[43]李小军,车良革,胡宝清.FLUS-InVEST模型的北海市生态系统碳储量时空差异分析[J].测绘通报,2023(6):117-123,183. DOI: 10.13474/j.cnki.11-2246.2023.0178.
[44]武爱彬,陈辅国,赵艳霞,等.京津冀城市群建设用地扩张多情景模拟及其对生态系统碳储量的影响[J].环境科学,2024,45(5):2828-2839. DOI: 10.13227/j.hjkx.202305221.
[45]贾艳红,吴春竹,胡洪文,等.基于电路理论的桂林漓江流域生态安全格局构建[J].广西师范大学学报(自然科学版),2024,42(5):201-212. DOI: 10.16088/j.issn.1001-6600.2024030502.
[1] 金润, 何丽, 罗芳, 何政伟, 李丹, 林之钰, 黄雨娜. 2000—2020年福建省生境质量时空演变及预测[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 170-182.
[2] 谭莹莹, 蒋瑜, 周绍齐. 旅游城市生态系统服务价值的时空演变——以桂林市为例[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 133-149.
[3] 贾艳红, 吴春竹, 胡洪文, 黄俊忠, 苏筱茜. 基于电路理论的桂林漓江流域生态安全格局构建[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 201-212.
[4] 奉婷, 周严, 董仁玲, 李灿. 基于改进三维生态足迹模型的珠江—西江经济带生态补偿价值测度及分区研究[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 229-244.
[5] 谢玲, 陈展图, 蒋瑜, 肖小慧, 贾艳红. 基于InVEST&GEO-detectors模型的会仙湿地生境质量变化及影响因素研究[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 180-190.
[6] 朱柏露, 杨奇勇, 谢运球, 邓艳, 唐梅蓉, 刘大存, 曾红春. 漓江流域土地石漠化空间分布及驱动因子分析[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 139-150.
[7] 郜红娟, 韩会庆, 罗绪强, 李金艳, 陈梦玲, 张新鼎. 贵州土地利用变化对淡水生态系统服务的影响[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 157-163.
[8] 肖飞鹏, 李晖, 尹辉, 王月. 基于生态系统服务的青狮潭水库生态补偿研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 162-167.
[9] 苏文静, 卢远, 蔡德所. 基于GIS的漓江流域水文特征空间分析[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 166-171.
[10] 何东艳, 华璀, 卢远. 漓江流域土地利用生态风险评价[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 172-178.
[11] 王晓超, 蔡德所, 祝铁钢, 张永祥, 林红军, 武大勇. 农田引水拦河坝对漓江流域河流生态系统的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 179-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发