2025年04月05日 星期六

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (2): 42-55.doi: 10.16088/j.issn.1001-6600.2024041605

• 物理与电子工程 • 上一篇    下一篇

基于可调宽度的多涡卷保守混沌系统的构建

颜闽秀*, 赵琦   

  1. 沈阳化工大学 信息工程学院, 辽宁 沈阳 110142
  • 收稿日期:2024-04-16 修回日期:2024-06-27 出版日期:2025-03-05 发布日期:2025-04-02
  • 通讯作者: 颜闽秀(1972—), 女, 福建仙游人, 沈阳化工大学副教授, 博士。 E-mail: yanminxiu@syuct.edu.cn
  • 基金资助:
    中国-北马其顿政府间科技合作项目(国科外〔2019〕22:6-8); 辽宁省教育厅基本科研项目(LJKMZ20220779); 辽宁省自然科学基金计划项目(2022-BS-211); 沈阳市科技计划项目(22-322-3-38)

Dynamic Analysis Multi-scroll Conservative Chaotic Systems Based on Controllable Width

YAN Minxiu*, ZHAO Qi   

  1. College of Information Engineering, Shenyang University of Chemical Technology, Shenyang Liaoning 110142, China
  • Received:2024-04-16 Revised:2024-06-27 Online:2025-03-05 Published:2025-04-02

摘要: 相较于耗散多涡卷混沌系统,保守多涡卷混沌系统在图像加密和保密通信领域具有潜在的应用前景,具有重要研究意义。基于哈密顿能量守恒原理,本文构建一个四维保守混沌系统。通过引入分段函数扩展系统的平衡点,得到沿x和y方向上可调节宽度的多涡卷混沌系统。通过调整系统参数和初始值,能够生成具有不同能级和涡卷数目的多涡卷类吸引子。值得注意的是,随着涡卷数量的增加,系统的Lyapunov指数呈现逐步上升趋势。通过NIST测试,验证了系统在随机信号发生器以及图像加密等应用方面的潜在价值。实验结果显示,系统的SE值高达0.63,充分证明其在保密通信领域的实用性和重要性。

关键词: 混沌系统, Lyapunov指数, NIST测试, 随机信号发生器, 图像加密

Abstract: Compared with dissipative multi-scroll chaotic systems, conservative multi-scroll chaotic systems exhibit potential application prospects in image encryption and secure communication, rendering the research significantly meaningful. Based on the principle of Hamiltonian energy conservation, a four-dimensional conservative chaotic system is constructed in this peper. By introducing piecewise functions, the equilibrium points of the system are expanded, resulting in a multi-scroll chaotic system with adjustable widths along the x and y directions. By adjusting the system parameters and initial values, multi-scroll-like attractors with different energy levels and scroll numbers are generated. Notably, as the number of scrolls increases, the Lyapunov exponent of the system also exhibits a gradually increasing trend. Through NIST testing, the potential value of the system in applications such as random signal generators and image encryption is verified. Experimental results show that the SE value of the system reaches 0.63, fully demonstrating its practicality and importance in the field of secure communication.

Key words: chaotic system, Lyapunov exponent, NIST test, random signal generator, image encryption

中图分类号:  O415.5

[1] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
[2] 张泽峰,黄丽莲,项建弘,等.新的具有宽参数范围的五维保守超混沌系统的动力学研究[J].物理学报,2021,70(23):128-138.DOI: 10.7498/aps.70.20210592.
[3] 颜闽秀,朱君洋.含大范围参数四维混沌系统的吸引子共存[J].深圳大学学报(理工版),2024,41(1):108-117.DOI: 10.3724/SP.J.1249.2024.01108.
[4] 邵慧婷,杨启贵.具有4个正Lyapunov指数的六维超混沌系统的复杂动力学研究[J].广西师范大学学报(自然科学版),2022,40(5):433-444.DOI: 10.16088/j.issn.1001-6600.2020022803.
[5] LAI Q, YANG L, LIU Y. Design and realization of discrete memristive hyperchaotic map with application in image encryption[J]. Chaos Solitons & Fractals, 2022, 165(Part 1): 112781. DOI: 10.1016/j.chaos.2022.112781.
[6] 梁钰婷,罗玉玲,张顺生.基于压缩感知的混沌图像加密研究综述[J].广西师范大学学报(自然科学版),2022,40(5):49-58.DOI: 10.16088/j.issn.1001-6600.2022012003.
[7] 李蓝航,丘森辉,肖丁维,等.基于DNA序列和动态索引扩散的图像加密算法[J].广西师范大学学报(自然科学版),2021,39(3):40-53.DOI: 10.16088/j.issn.1001-6600.2020080503.
[8] ZHENG P S, TANG W S, ZHANG J X. Some novel double-scroll chaotic attractors in Hopfield networks[J]. Neurocomputing, 2010, 73(10/12): 2280-2285. DOI: 10.1016/j.neucom.2010.02.015.
[9] MA C G, MOU J, YANG F F, et al. A fractional-order Hopfield neural network chaotic system and its circuit realization[J]. The European Physical Journal Plus, 2020, 135(1): 100. DOI: 10.1140/epjp/s13360-019-00076-1.
[10] CHUA L. Everything you wish to know about memristors but are afraid to ask[M] // CHUA L, SIRAKOULIS G C, ADAMATZKY A. Handbook of Memristor Networks. Cham: Springer, 2019: 89-157. DOI: 10.1007/978-3-319-76375-0_3.
[11] LIN H R, WANG C H, SUN Y C, et al. Firingmultistability in a locally active memristive neuron model[J]. Nonlinear Dynamics, 2020, 100(4): 3667-3683. DOI: 10.1007/s11071-020-05687-3.
[12] BAO B C, QIAN H, XU Q, et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network[J]. Frontiers in Computational Neuroscience, 2017, 11: 81. DOI: 10.3389/fncom.2017.00081.
[13] LI R H, WANG Z H, DONG E Z. A new locally active memristive synapse-coupled neuron model[J]. Nonlinear Dynamics, 2021, 104(4): 4459-4475. DOI: 10.1007/s11071-021-06574-1.
[14] CHENG G H, LI D, YAO Y G, et al. Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells[J]. Chaos, Solitons, and Fractals, 2023, 174: 113837. DOI: 10.1016/j.chaos.2023.113837.
[15] LIN H R, WANG C H, YU F, et al. A triple-memristor Hopfield neural network with space multistructure attractors and space initial-offset behaviors[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(12): 4948-4958. DOI: 10.1109/TCAD.2023.3287760.
[16] ZHAO M Y, YANG Q G, ZHANG X. Dynamics of a class of Chua’s oscillator with a smooth periodic nonlinearity: Occurrence of infinitely many attractors[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 115: 106744. DOI: 10.1016/j.cnsns.2022.106744.
[17] LIU X L, TONG X J, WANG Z, et al. Construction of controlled multi-scroll conservative chaotic system and its application in color image encryption[J]. Nonlinear Dynamics, 2022, 110(2): 1897-1934. DOI: 10.1007/s11071-022-07702-1.
[18] DONG E Z, LI R H, DU S Z. A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation[J]. Chinese Physics B, 2021, 30(2): 020505. DOI: 10.1088/1674-1056/abc239.
[19] YANG Y, HUANG LL, XIANG J H, et al. Three-dimensional sine chaotic system with multistability and multi-scroll attractor[J]. IEEE Transactions on Circuits and Systems II-Express Briefs, 2022, 69(3): 1792-1796. DOI: 10.1109/TCSII.2021.3126227.
[20] LIU J W, CHEN Z G. A generalized Hamiltonian conservative system with multi-scroll chaotic flows[C] // The 2022 International Conference on Artificial Life and Robotics. Oita: ALife Robotics Corporation Ltd., 2022: 132-136. DOI: 10.5954/ICAROB.2022.OS33-3.
[21] LIN H R, WANG C H, SUN Y C. A universal variable extension method for designingmultiscroll/wing chaotic systems[J]. IEEE Transactions on Industrial Electronics, 2024, 71(7): 7806-7818. DOI: 10.1109/TIE.2023.3299020.
[22] LIN H R, WANG C H, SUN Y C, et al. Generatingn-scroll chaotic attractors from a memristor-based magnetized Hopfield neural network[J]. IEEE Transactions on Circuits and Systems II-Express Briefs, 2023, 70(1): 311-315. DOI: 10.1109/tcsii.2022.3212394.
[23] LIN H R, WANG C H, DU S C, et al. A family ofmemristive multibutterfly chaotic systems with multidirectional initial-based offset boosting[J]. Chaos, Solitons, and Fractals, 2023, 172: 113518. DOI: 10.1016/j.chaos.2023.113518.
[24] NAIK R B, SINGH U. A review on applications of chaotic maps in pseudo-random number generators and encryption[J]. Annals of Data Science, 2024, 11(1): 25-50. DOI: 10.1007/s40745-021-00364-7.
[25] DEHGHANI R, KHEIRI H. Chaotic-based color image encryption using a hybrid method of reversible cellular automata and DNA sequences[J]. Multimedia Tools and Applications, 2024, 83(6): 17429-17450. DOI: 10.1007/s11042-023-16118-x.
[26] DENG Q L, WANG C H. Multi-scroll hidden attractors with two stable equilibrium points[J]. Chaos, 2019, 29(9): 093112. DOI: 10.1063/1.5116732.
[27] RAJAGOPAL K, ÇIÇEK S, NASERADINMOUSAVI P, et al. A novel parametrically controlled multi-scroll chaotic attractor along with electronic circuit design[J]. The European Physical Journal Plus, 2018,133(9): 354. DOI: 10.1140/epjp/i2018-12168-9.
[1] 颜闽秀, 靳琪森. 多维混沌系统的构建及其多通道自适应控制[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 8-21.
[2] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49-58.
[3] 邵慧婷, 杨启贵. 具有4个正Lyapunov指数的六维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 433-444.
[4] 李蓝航, 丘森辉, 王文仪, 肖丁维, 罗玉玲. 基于混沌映射的彩色图像多层交互加密算法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 72-86.
[5] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79-92.
[6] 李蓝航, 丘森辉, 肖丁维, 黎亮佳, 欧阳雪, 罗玉玲. 基于DNA序列和动态索引扩散的图像加密算法[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 40-53.
[7] 洪玲玲,杨启贵. 新四维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 96-105.
[8] 杨鲲, 林娇, 蒋贵荣. 具有脉冲生育的随机SIS传染病模型的动力学分析[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 81-86.
Viewed
Full text
0
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 0


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发