广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (2): 200-215.doi: 10.16088/j.issn.1001-6600.2023041406

• • 上一篇    

植物生长期根部病害生防菌筛选方法改进及其装置研制

黄植清1, 刘莹儿1, 黄名丽1, 陈英绘1, 尚常花1,2*, 陆祖军1,2*   

  1. 1.广西师范大学 生命科学学院, 广西 桂林 541006;
    2.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006
  • 收稿日期:2023-04-14 修回日期:2023-05-07 发布日期:2024-04-22
  • 通讯作者: 尚常花(1980—), 男, 山西晋城人, 广西师范大学副教授, 博士。 E-mail: shangchanghua@gxnu.edu.cn;陆祖军(1963—), 男, 广西百色人, 广西师范大学教授, 博士。 E-mail: 1946208364@qq.com
  • 基金资助:
    广西重点研发计划项目(2021AB27009)

Improvement of Screening Method and Device Development of Biocontrol Bacteria for Plant Root Diseases During Growth Period

HUANG Zhiqing1, LIU Yinger1, HUANG Mingli1, CHEN Yinghui1, SHANG Changhua1,2*, LU Zujun1,2*   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2023-04-14 Revised:2023-05-07 Published:2024-04-22

摘要: 为克服室内筛选生防菌的方法往往忽略植物基础作用的弊端,本文比较双重培养法、液体介质筛选法和种苗基质筛选法的优劣,并在改进种苗基质筛选法的基础上研制新装置。该装置由耐高温(135 ℃)、高压(0.15 MPa)的500 mL PP组培瓶改装而成。组培瓶的柱状空间分为植物种植区、植物病原菌培养区和候选生防菌培养区,各区间以0.45 μm硝酸纤维滤膜隔阻。植物种植区敞口、植物病原菌培养区和候选生防菌培养区以盖子密闭。本文装置以近似自然条件的植物根系分泌物和土壤渗出物作为基质筛选候选生防菌,获得的结果更可信;以菌体密度的变化反映病原菌和候选生防菌的拮抗效果,容易检测。该装置构造简单、成本低廉、使用方便,可用于各种植物根部病原菌生防菌的批量筛选,但不适用于植物叶片、茎秆病害的生防菌筛选。

关键词: 病原菌, 生防菌, 筛选, 铜绿假单胞菌, 拮抗

Abstract: The current indoor screening methods for biocontrol bacteria tend to ignore the basic role of plants; to overcome this drawback, this paper compares the methods of indoor screening for biocontrol bacteria of dual culture, liquid medium screening and seedling substrate screening, then develops a new device based on the improved seedling substrate screening method. This device was modified of the PP-500 mL tissue culture bottle which resistant to high temperature (135 ℃) and high pressure (0.15 MPa). The columnar space of the tissue culture bottle was divided into 3 zones, there were plant growing zone, plant pathogen culture zone, and the candidate biocontrol strain culture one. Each zone was separated by a 0.45 μm nitrate fiber filter membrane. The plant growing zone was open, but the plant pathogen and the candidate biocontrol strain culture zones were closed with a lid. In this device, root exudates of plant growing in approximation of natural conditions and soil exudates were used as substrates to screen candidate biocontrol bacteria, so the results obtained were more reliable. The antagonistic effect of pathogen and candidate biocontrol bacteria was reflected by the change of cell density in this device, which was easy to detect and the result was definite. The device had the advantages of simple structure, low cost and convenient operation. It can be used for batch screening of candidate biocontrol bacteria against various plant root pathogens, but not suitable for screening of that against pathogens of leaf and stalk.

Key words: pathogenic fungi, biocontrol bacteria, screening, Pseudomonas aeruginosa, antagonism

中图分类号:  S432; S476

[1] 田书鑫, 刘南南, 王桂清. 对峙培养法在生防菌抑制效果研究中的应用[J]. 河南农业科学, 2019, 48(8): 1-6. DOI: 10.15933/j.cnki.1004-3268.2019.08.001.
[2] MOTA M S, GOMES C B, SOUZA JÚNIOR I T, et al. Bacterial selection for biological control of plant disease: criterion determination and validation[J]. Brazilian Journal of Microbiology, 2017, 48(1): 62-70. DOI: 10.1016/j.bjm.2016.09.003.
[3] WANG L Y, XIE Y S, CUI Y Y, et al. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum[J]. Microbiological Research, 2015, 177: 34-42. DOI: 10.1016/j.micres.2015.05.005.
[4] RAYMAEKERS K, PONET L, HOLTAPPELS D, et al. Screening for novel biocontrol agents applicable in plant disease management: a review[J]. Biological Control, 2020, 144: 104240. DOI: 10.1016/j.biocontrol.2020.104240.
[5] SALES M D C, COSTA H B, FERNANDES P M B, et al. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple[J]. Asian Pacific Journal of Tropical Biomedicine, 2016, 6(1): 26-31. DOI: 10.1016/j.apjtb.2015.09.026.
[6] OMAR S A, ABD-ALLA M H. Biocontrol of fungal root rot diseases of crop plants by the use of rhizobia and bradyrhizobia[J]. Folia Microbiologica, 1998, 43(4): 431-437. DOI: 10.1007/Bf02818587.
[7] ABRAHAM A O, LAING M D, BOWER J P. Isolation and in vivo screening of yeast and Bacillus antagonists for the control of Penicillium digitatum of citrus fruit[J]. Biological Control, 2010, 53(1): 32-38. DOI: 10.1016/j.biocontrol.2009.12.009.
[8] ZHANG X, ZHOU Y Y, LI Y, et al. Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew[J]. Crop Protection, 2017, 96: 173-179. DOI: 10.1016/j.cropro.2017.02.018.
[9] LATZ M A C, JENSEN B, COLLINGE D B, et al. Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach[J]. Biological Control, 2020, 141: 104128. DOI: 10.1016/j.biocontrol.2019.104128.
[10] LI L H, MA J C, LI Y, et al. Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt[J]. Crop Protection, 2012, 35: 29-35.DOI: 10.1016/j.cropro.2011.12.004.
[11] SANTIAGO T R, GRABOWSKI C, ROSSATO M, et al. Biological control of eucalyptus bacterial wilt with rhizobacteria[J]. Biological Control, 2015, 80: 14-22. DOI: 10.1016/j.biocontrol.2014.09.007.
[12] MILUS E A, ROTHROCK C S. Efficacy of bacterial seed treatments for controlling Pythium root rot of winter wheat[J]. Plant Disease, 1997, 81(2): 180-184. DOI: 10.1094/PDIS.1997.81.2.180.
[13] PIASECKA A, JEDRZEJCZAK-REY N, BEDNAREK P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals[J]. New Phytologist, 2015, 206(3): 948-964. DOI: 10.1111/nph.13325.
[14] HOLTAPPELS D, LAVIGNE R, HUYS I, et al. Protection of phage applications in crop production: a patent landscape[J]. Viruses, 2019, 11(3): 277. DOI: 10.3390/v11030277.
[15] 肖咪云, 阮楚晋, 陈寿昆, 等. 一株产天然蓝色素细菌的分离鉴定[J]. 广西师范大学学报(自然科学版), 2018, 36(4):131-138. DOI: 10.16088/j.issn.1001-6600.2018.04.017.
[16] 刘亭亭. 铜绿假单胞菌抗菌目标活性物质的分离鉴定及其高产工程菌的构建[D]. 桂林: 广西师范大学, 2020.
[17] 张泽, 邓业成, 陈敢, 等. 罗汉果土传病害拮抗真菌的筛选及其抗菌活性研究[J]. 河南农业科学, 2021, 50(6): 91-98. DOI: 10.15933/j.cnki.1004-3268.2021.06.011.
[18] 钟慧, 钟勇, 卿朕, 等. 2种中药植物提取物抑菌活性初步研究[J]. 河南农业科学, 2015, 44(9): 64-68. DOI: 10.15933/j.cnki.1004-3268.2015.09.016.
[19] 王卓妮, 覃艮红, 王丽, 等. 草莓病害拮抗细菌的筛选及其对草莓褐色叶斑病的防效[J]. 中国蔬菜, 2023(2):63-71. DOI: 10.19928/j.cnki.1000-6346.2023.5012.
[20] 潘梦诗, 郭文阳, 张宗源,等. 贝莱斯芽孢杆菌对花生白绢病的防治效果[J]. 生物学杂志, 2022, 39(1):37-41. DOI: 10.3969/j.issn.2095-1736.2022.01.037.
[21] 牟玉梅, 范高领, 邢丹. 辣椒种子拮抗青枯病菌内生细菌的分离、鉴定[J]. 中国瓜菜, 2020, 33(2):42-47. DOI: 10.16861/j.cnki.zggc.2020.0034.
[22] 连芸芸, 李焕宇, 李惠霞,等. 不同催芽处理对辣椒种子发芽的影响[J]. 江苏农业科学, 2021, 49(10):132-135. DOI: 10.15889/j.issn.1002-1302.2021.10.024.
[23] KHALIL M M R, FIERRO-CORONADO R A, PEÑUELAS-RUBIO O, et al. Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato[J]. Saudi Journal of Biological Sciences, 2021, 28(12): 7460-7471. DOI: 10.1016/j.sjbs.2021.08.043.
[24] 唐荣莉, 王春萍, 王红娟, 等. 低磷胁迫对辣椒苗期生长和生理特性的影响[J]. 西南农业学报, 2020, 33(9): 1933-1942. DOI: 10.16213/j.cnki.scjas.2020.9.009.
[25] VAN R E T, GIRARD G, LUGTENBERG B J J, et al. Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391[J]. Microbiology, 2005, 151(pt 8): 2805-2814. DOI: 10.1099/mic.0.28063-0.
[26] BROECKLING C D, BROZ A K, BERGELSON J, et al. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology, 2008, 74(3): 738-744. DOI: 10.1128/AEM.02188-07.
[27] BADRI D V, QUINTANA N, EL KASSISE G, et al. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota[J]. Plant Physiology, 2009, 151(4): 2006-2017. DOI: 10.1104/pp.109.147462.
[28] CHAPARRO J M, BADRI D V, BAKKER M G, et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J]. Plos One, 2013, 8(2): e55731. DOI: 10.1371/journal.pone.0055731.
[29] 刘东霞, 杨莉, 宋连昭, 等. 三种镰孢菌对不同苜蓿品种致病性的比较研究[J]. 草地学报, 2022, 30(4):909-918. DOI: 10.11733/j.issn.1007-0435.2022.04.016.
[30] CHAPARRO J M, BADRI D V, VIVANCO J M. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal, 2014, 8(4): 790-803. DOI: 10.1038/ismej.2013.196.
[31] BULGARELLI D, SCHLAEPPI K, SPAEPEN S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64(1):807-838. DOI: 10.1146/annurev-arplant-050312-120106.
[32] 吴凤芝, 孟立君, 文景芝. 黄瓜根系分泌物对枯萎病菌菌丝生长的影响[J]. 中国蔬菜, 2002(5):26-27. DOI: 10.3969/j.issn.1000-6346.2002.05.012.
[33] STEINKELLNER S, MAMMERLER R, VIERHEILIG H. Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates[J]. Journal of Plant Interactions, 2005, 1(1):23-30. DOI: 10.1080/17429140500134334.
[34] 王刚正, 罗义, 李佳璐, 等. 毛木耳子实体蛛网病的病害特征及致病菌Cladobotryum cubitense的生理特性和防控策略[J]. 菌物学报, 2019, 38(3): 341-348.DOI: 10.13346/j.mycosystema.180270.
[35] CHAREST P M, OUELLETTE G B, PAUZÉ F J. Cytological observations of early infection process by Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants[J]. Canadian Journal of Botany, 1984, 62(6): 1232-1244. DOI: 10.1139/b84-166.
[36] 吴红淼, 林文雄. 药用植物连作障碍研究评述和发展透视[J]. 中国生态农业学报 (中英文), 2020, 28(6): 775-793. DOI: 10.13930/j.cnki.cjea.190760.
[37] WU H M, QIN X J, WANG J Y, et al. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes[J]. Agriculture, Ecosystems & Environment, 2019, 270/271: 19-31. DOI: 10.1016/j.agee.2018.10.014.
[38] MA L, ZHENG S C, ZHANG T K, et al. Effect of nicotine from tobacco root exudates on chemotaxis, growth, biocontrol efficiency, and colonization by Pseudomonas aeruginosa NXHG29[J]. Antonie Van Leeuwenhoek, 2018, 111(7): 1237-1257. DOI: 10.1007/s10482-018-1035-7.
[39] SHORESH M, HARMAN G E, MASTOURI F. Induced systemic resistance and plant responses to fungal biocontrol agents[J]. Annual Review of Phytopathology, 2010, 48(1): 21-43. DOI: 10.1146/annurev-phyto-073009-114450.
[1] 戴明瑶, 李亚诗, 黄新妮, 肖君, 黄植清, 吕春萌, 陆祖军. 铜绿假单胞菌phzR对生物被膜基因转录及细胞运动性能的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 161-174.
[2] 徐萍, 钟思敏, 李斌斌, 熊文俊. 基于稀疏超高维非参数可加模型的条件独立筛选[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 100-107.
[3] 田镇滔, 张军舰. 基于分位数方法的超高维删失数据的特征筛选[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 99-111.
[4] 肖咪云, 孙孟龙, 阮楚晋, 陈寿昆, 刘裕华, 陆祖军. 生防细菌2016NX1对病原真菌的抑制及发酵条件优化[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 168-178.
[5] 刘祎, 叶雪梅, 肖咪云, 吕丽君, 侯澄友, 陆祖军. 快速荧光测定初筛高刺桐碱积累量菌株[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 141-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁静静, 郑宇钊, 徐晨枫, 殷婷婕. 非内吞依赖型生物大分子药物胞质递送策略研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 1 -8 .
[2] 涂广升, 孔咏骏, 宋哲超, 叶康. 密文域可逆信息隐藏研究进展及技术难点分析[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 1 -15 .
[3] 杨杨阳, 朱震霆, 杨翠萍, 李世豪, 张舒, 范秀磊, 万蕾. 基于文献计量学分析的剩余污泥厌氧消化预处理研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 16 -29 .
[4] 许伦辉, 李金龙, 李若南, 陈俊宇. 基于动态生成对抗网络的路网缺失交通数据修复[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 30 -40 .
[5] 杨海, 谢亚琴. 基于Floyd算法的5G基站区域储能分配策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 41 -54 .
[6] 闫文文, 文中, 王爽, 李国祥, 王博宇, 吴艺. 基于AA-CAES电站和综合需求响应的供暖期弃风消纳策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 55 -68 .
[7] 甘友春, 王灿, 贺旭辉, 张羽, 张雪菲, 王帆, 喻亚洲. 考虑光热电站和柔性负荷的电氢热综合能源系统联合优化运行[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 69 -83 .
[8] 王旭阳, 王常瑞, 张金峰, 邢梦怡. 基于跨模态交叉注意力网络的多模态情感分析方法[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 84 -93 .
[9] 王卫舵, 王以松, 杨磊. 云资源调度的回答集程序描述性求解[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 94 -104 .
[10] 余谦, 陈庆锋, 何乃旭, 韩宗钊, 卢家辉. 基于矩阵运算加速的改进社区发现遗传算法[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 105 -119 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发