广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 67-78.doi: 10.16088/j.issn.1001-6600.2023032802

• 研究论文 • 上一篇    下一篇

忆阻Morris-Lecar神经网络的同步行为研究

黄微, 韦笃取*   

  1. 广西师范大学 电子与信息工程学院, 广西 桂林 541004
  • 收稿日期:2023-03-28 修回日期:2023-06-26 出版日期:2024-01-25 发布日期:2024-01-19
  • 通讯作者: 韦笃取(1975—),男(壮族),广西贵港人,广西师范大学教授,博士。E-mail:weiduqu@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(62062014);广西自然科学基金(2021JJA170004)

Synchronization Behavior of Memristor Morris-Lecar Neural Networks

HUANG Wei, WEI Duqu*   

  1. College of Electronic and Information Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2023-03-28 Revised:2023-06-26 Online:2024-01-25 Published:2024-01-19

摘要: 本文研究电磁感应系数和膜表面电荷尺寸对忆阻Morris-Lecar(ML)神经网络动力学行为的影响。以电荷尺寸为参数研究忆阻ML神经网络的放电行为,发现增大电荷尺寸会抑制神经元放电频率和幅度,神经元随着时间的推移进入静息状态。以电磁感应系数和电荷尺寸作为变量研究神经网络的同步行为。固定电荷尺寸,增大电磁感应系数,神经网络由混沌变得有序;电磁感应系数是决定神经网络同步的关键因素,当电磁感应系数K>3.2时,能更有效地诱导和增强同步。引入同步因子和标准差分别对网络的同步程度和神经元放电程度进行量化。实验结果表明,电磁感应系数可以有效调节神经网络的同步行为,具有控制神经网络的放电模式和网络同步的作用。

关键词: Morris-Lecar, 神经元, 电磁感应, 表面电荷, 同步放电

Abstract: The effects of electromagnetic induction coefficient and membrane surface charge size on the memristor Morris-Lecar (ML) neural network dynamics are investigated. Using charge size as a parameter to study the discharge behavior of memristor ML neural network, it is found that increasing charge size will inhibit the firing frequency and amplitude of neurons, and the neurons will enter the resting state over time. The synchronization behavior of neural network is studied with electromagnetic induction coefficient and charge size as variables. When the electric charge size is fixed and the electromagnetic induction coefficient is increased, the neural network becomes orderly from chaos. The electromagnetic induction coefficient is the key factor to determine neural network synchronization. When the electromagnetic induction coefficient K>3.2, the synchronization can be induced and enhanced more effectively. Synchronization factor and standard deviation are introduced to quantify the degree of network synchronization and neuron firing. The experimental results show that the electromagnetic induction coefficient can effectively regulate the synchronization behavior of neural network, and has the function of controlling the discharge mode and network synchronization.

Key words: Morris-Lecar, neurons, electromagnetic induction, surface charge, synchronous discharge

中图分类号:  TP183

[1] YAO Z, WANG C N. Control the collective behaviors in a functional neural network[J]. Chaos Solitons & Fractals, 2021, 152: 111361. DOI: 10.1016/j.chaos.2021.111361.
[2] ABRAMS D M, PECORA L M, MOTTER A E. Introduction to focus issue: Patterns of network synchronization[J]. Chaos, 2016, 26(9): 094601. DOI: 10.1063/1.4962970.
[3] BAO H, ZHANG Y Z, LIU W B, et al. Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera[J]. Nonlinear Dynamics, 2020, 100(1): 937-950. DOI: 10.1007/s11071-020-05529-2.
[4] 周倩,韦笃取.场耦合忆阻神经网络的电活动[J].计算物理,2020,37(6):750-756.DOI: 10.19596/j.cnki.1001-246x.8168.
[5] MA J. Biophysical neurons, energy, and synapse controllability: a review[J]. Journal of Zhejiang University-Science A, 2023, 24(2): 109-129. DOI: 10.1631/jzus.A2200469.
[6] MAJHI S, PERC M, GHOSH D. Chimera states in uncoupled neurons induced by a multilayer structure[J]. Scientific Reports, 2016, 6(1): 39033. DOI: 10.1038/srep39033.
[7] MA J, SONG X L, TANG J, et al. Wave emitting and propagation induced by autapse in a forward feedback neuronal network[J]. Neurocomputing, 2015, 167: 378-389. DOI: 10.1016/j.neucom.2015.04.056.
[8] GUO L, GUO M X, WU Y X, et al. Specific neural coding of fMRI spiking neural network based on time coding[J]. Chaos, Solitons & Fractals, 2023, 174: 113821. DOI: 10.1016/j.chaos.2023.113821.
[9] MA J, QIN H X, SONG X L, et al. Pattern selection in neuronal network driven by electric autapses with diversity in time delays[J]. International Journal of Modern Physics B, 2015, 29(1): 1450239. DOI: 10.1142/S0217979214502397.
[10] SINGER W, GRAY C M. Visual feature integration and the temporal correlation hypothesis[J]. Annual Review of Neuroscience, 1995, 18(1): 555-586. DOI: 10.1146/annurev.ne.18.030195.003011.
[11] LLINÁS R, RIBARY U. Coherent 40-Hz oscillation characterizes dream state in humans[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(5): 2078-2081. DOI: 10.1073/pnas.90.5.2078.
[12] BARTSCH R, KANTELHARDT J W, PENZEL T, et al. Experimental evidence for phase synchronization transitions in the human cardiorespiratory system[J]. Physical Review Letters, 2007, 98(5): 054102. DOI: 10.1103/PhysRevLett.98.054102.
[13] ZHANG Y R, HOU J C, TOWHIDLOU V, et al. A neural network prediction-based adaptive mode selection scheme in full-duplex cognitive networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3): 540-553. DOI: 10.1109/TCCN.2019.2911005.
[14] SPENCER S S. Neural networks in human epilepsy: evidence of and implications for treatment[J]. Epilepsia, 2002, 43(3): 219-227. DOI: 10.1046/j.1528-1157.2002.26901.x.
[15] JIRUSKA P, DE CURTIS M, JEFFERYS J G R, et al. Synchronization and desynchronization in epilepsy: controversies and hypotheses[J]. The Journal of Physiology, 2013, 591(4): 787-797. DOI: 10.1113/jphysiol.2012.239590.
[16] 钟国翔,韦笃取,张波.分布式发电系统感性负载的远程混沌同步[J].计算物理,2019,36(6):719-725.DOI:10.19596/j.cnki.1001-246x.7931.
[17] 查进道,李春彪.基于引力场理论的混沌同步[J].计算物理,2018,35(6):737-749.DOI: 10.19596/j.cnki.1001-246x.7758.
[18] SMITHA K A, AKHIL RAJA K, ARUN K M, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks[J]. The Neuroradiology Journal, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
[19] SUN X J, SHI X. Effects of channel blocks on the spiking regularity in clustered neuronal networks[J]. Science China Technological Sciences, 2014, 57(5): 879-884. DOI: 10.1007/s11431-014-5529-x.
[20] HUANG Y D, LI X, SHUAI J W. Langevin approach with rescaled noise for stochastic channel dynamics in Hodgkin-Huxley neurons[J]. Chinese Physics B, 2015, 24(12): 120501. DOI: 10.1088/1674-1056/24/12/120501.
[21] REN G D, XU Y, WANG C N. Synchronization behavior of coupled neuron circuits composed of memristors[J]. Nonlinear Dynamics, 2017, 88(2): 893-901. DOI: 10.1007/s11071-016-3283-2.
[22] DUNCAN P J, FAZLI M, ROMANÒ N, et al. Chronic stress facilitates bursting electrical activity in pituitary corticotrophs[J]. The Journal of Physiology, 2022, 600(2): 313-332. DOI: 10.1113/JP282367.
[23] GU H G, PAN B B. A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model[J]. Nonlinear Dynamics, 2015, 81(4): 2107-2126. DOI: 10.1007/s11071-015-2129-7.
[24] ATKINS D E, BOSH K L, BREAKFIELD G W, et al. The effect of calcium ions on mechanosensation and neuronal activity in proprioceptive neurons[J]. NeuroSci, 2021, 2(4): 353-371. DOI: 10.3390/neurosci2040026.
[25] WU F Q, MA J, ZHANG G. A new neuron model under electromagnetic field[J]. Applied Mathematics and Computation, 2019, 347: 590-599. DOI: 10.1016/j.amc.2018.10.087.
[26] 钟敏,唐国宁.通过控制钙和钾离子流抑制心脏中的螺旋波和时空混沌[J].计算物理,2011,28(1):119-124.DOI: 10.3969/j.issn.1001-246X.2011.01.017.
[27] STENZINGER R V, SCALVIN T E, MORELO P A, et al. Cardiac behaviors and chaotic arrhythmias in the Hindmarsh-Rose model[J]. Chaos, Solitons & Fractals, 2023, 175: 113983. DOI: 10.1016/j.chaos.2023.113983.
[28] GHORI M B, KANG Y M. Uncertainty quantification and sensitivity analysis of a hippocampal CA3 pyramidal neuron model under electromagnetic induction[J]. Nonlinear Dynamics, 2023, 111(14): 13457-13479. DOI: 10.1007/s11071-023-08514-7.
[29] 李雅岱,韦笃取.含磁场耦合忆阻神经网络放电行为研究[J].广西师范大学学报(自然科学版),2020,38(3):19-24.DOI: 10.16088/j.issn.1001-6600.2020.03.003.
[30] 马军.功能神经元建模及动力学若干问题[J].广西师范大学学报(自然科学版),2022,40(5):307-323.DOI: 10.16088/j.issn.1001-6600.2021122301.
[31] KAFRAJ M S, PARASTESH F, JAFARI S. Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise[J]. Chaos Solitons & Fractals, 2020, 137: 109782. DOI: 10.1016/j.chaos.2020.109782.
[32] 谭安杰,韦笃取,覃英华.电磁场耦合忆阻神经网络的放电模式及同步行为研究[J].广西师范大学学报(自然科学版),2020,38(1):107-113.DOI: 10.16088/j.issn.1001-6600.2020.01.014.
[33] MORRIS C, LECAR H. Voltage oscillations in the barnacle giant muscle fiber[J]. Biophysical Journal, 1981, 35(1): 193-213. DOI: 10.1016/S0006-3495(81)84782-0.
[34] WANG H T, WANG L F, YU L C, et al. Response of Morris-Lecar neurons to various stimuli[J]. Physical Review E, 2011, 83(2): 021915. DOI: 10.1103/PhysRevE.83.021915.
[35] LIU C M, LIU X L, LIU S Q. Bifurcation analysis of a Morris-Lecar neuron model[J]. Biological Cybernetics, 2014, 108(1): 75-84. DOI: 10.1007/s00422-013-0580-4.
[36] HU X Y, LIU C X, LIU L, et al. An electronic implementation for Morris-Lecar neuron model[J]. Nonlinear Dynamics, 2016, 84(4): 2317-2332. DOI: 10.1007/s11071-016-2647-y.
[37] FU F, LIU L H, WANG L. Evolutionary prisoner's dilemma on heterogeneous Newman-Watts small-world network[J]. The European Physical Journal B, 2007, 56(4): 367-372. DOI: 10.1140/epjb/e2007-00124-5.
[38] MA J, ZHANG G, HAYAT T, et al. Model electrical activity of neuron under electric field[J]. Nonlinear Dynamics, 2019, 95(2): 1585-1598. DOI: 10.1007/s11071-018-4646-7.
[39] LV M, WANG C N, REN G D, et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85(3): 1479-1490. DOI: 10.1007/s11071-016-2773-6.
[1] 钱有为, 何富运, 韦燕, 冯慧玲, 胡聪. 基于双编码路径融合和双向ConvLSTM的神经元图像分割[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 67-79.
[2] 马军. 功能神经元建模及动力学若干问题[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 307-323.
[3] 谭安杰, 韦笃取, 覃英华. 电磁场耦合忆阻神经网络的放电模式及同步行为研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 107-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗云演, 李容正, 李冰, 丁晨旭. 响应面优化多刺绿绒蒿总生物碱提取工艺[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 84 -90 .
[2] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[3] 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14 -25 .
[4] 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26 -36 .
[5] 梁正友, 蔡俊民, 孙宇, 陈磊. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37 -48 .
[6] 欧阳舒歆, 王洺钧, 荣垂田, 孙华波. 基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 49 -60 .
[7] 李依洋, 曾才斌, 黄在堂. 分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 61 -68 .
[8] 李鹏博, 李永祥. 外部区域上p-Laplace方程的径向对称解[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 69 -75 .
[9] 吴子弦, 成军, 符坚铃, 周心雯, 谢佳龙, 宁全. 基于PI的Semi-Markovian电力系统事件触发控制设计分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 76 -85 .
[10] 程蕾, 闫普选, 杜博豪, 叶思, 邹华红. MOF-2的水相合成及其热稳定和介电性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 86 -95 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发