广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (4): 208-219.doi: 10.16088/j.issn.1001-6600.2022062701

• 研究论文 • 上一篇    下一篇

一种快速构建小鼠肥胖模型的方法

黄力1,2, 刘泽标1,2, 朱宇1,2, 王涛1,2, 吴琼1,2*   

  1. 1.广西高校干细胞与医药生物技术重点实验室(广西师范大学),广西桂林 541004;
    2.广西师范大学生命科学学院,广西桂林 541006
  • 收稿日期:2022-06-27 修回日期:2022-10-07 出版日期:2023-07-25 发布日期:2023-09-06
  • 通讯作者: 吴琼(1984—),女,甘肃平凉人,广西师范大学副教授,博士。E-mail:wubinbin02@163.com
  • 基金资助:
    国家自然科学基金(32160170);广西自然科学基金(2020GXNSFAA259049)

A Method to Rapidly Construct a Mouse Obesity Model

HUANG Li1,2, LIU Zebiao1,2, ZHU Yu1,2, WANG Tao1,2, WU Qiong1,2*   

  1. 1. Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-06-27 Revised:2022-10-07 Online:2023-07-25 Published:2023-09-06

摘要: 采用高脂饮食构建小鼠肥胖模型,发现传统高脂饲料存在适口性差、建模时间长、成模率低等问题。针对这些问题,本文通过改进传统高脂饲料配方,采用间隔喂养的方法构建C57BL/6J小鼠肥胖模型。造模组成模后检测血清生化指标、脂肪质量、肝脏、脂肪、胰腺组织病理学变化。结果表明:1)投喂改进高脂饲料均能缩短造模时间,在间隔喂养方法下仅需6周即可建成小鼠肥胖模型。2)高脂饲料组血清中肝功能、肾功能相关生化指标正常,血脂升高(P<0.01);病理学组织切片显示肝组织存在轻到中度水肿,脂肪细胞体积增大,胰腺组织未见异常。本文的改进高脂饲料适口性好,能在短时间内升高小鼠体质量,比市面上同类型的高脂饲料建模时间更短且具有食品安全性。

关键词: 高脂饮食喂养, 饮食诱导肥胖, 肥胖模型, 高脂饲料, C57BL/6J小鼠

Abstract: High-fat diet was used to construct a mouse obesity model, and it was found that the traditional high-fat diet had problems such as poor palatability, long modeling time, and low molding rate. In response to these problems, the obesity model of C57BL/6J mice was established by improving the traditional high-fat diet formula and using the method of interval feeding. After modeling, serum biochemical indexes, fat weight, and histopathological changes of liver, fat and pancreas were detected. The results showed that: 1) feeding the improved high-fat diet could shorten the modeling time, and the mouse obesity model could be established in only 6 weeks under the interval feeding method; 2) the serum liver function and renal function of the high-fat diet group related to Biochemical indicators were normal, blood lipids was elevated (P<0.01), and histopathological tissue sections showed mild to moderate edema in liver tissue, increased adipocyte volume, and no abnormality in pancreatic tissue. The improved high-fat feed in this experiment had high palatability and could increase the body weight of mice in a short time, which was shorter than the same type of high-fat feed on the market and had food safety.

Key words: high-fat diet feeding, diet-induces obesity, obesity model, high-fat diet, C57BL/6J mice

中图分类号:  R589.2; R-332

[1] HARIRI N, THIBAULT L. High-fat diet-induced obesity in animal models[J]. Nutrition Research Reviews, 2010, 23(2):270-299. DOI: 10.1017/S0954422410000168.
[2] WEST D B, YORK B. Dietary fat, genetic predisposition, and obesity: lessons from animal models[J]. The American Journal of Clinical Nutrition, 1998, 67(3 Sup): 505S-512S. DOI: 10.1093/ajcn/67.3.505S.
[3] WOODS S C, SEELEY R J, RUSHING P A, et al. A controlled high-fat diet induces an obese syndrome in rats[J]. The Journal of Nutrition, 2003, 133(4): 1081-1087. DOI: 10.1093/jn/133.4.1081.
[4] DE GIT KCG, PETERSE C, BEERENS S, et al. Is leptin resistance the cause or the consequence of diet-induced obesity?[J]. International Journal of Obesity, 2018, 42(8): 1445-1457. DOI: 10.1038/s41366-018-0111-4.
[5] KAN S, LI R, TAN Y, YANG F H, et al. Latexin deficiency attenuates adipocyte differentiation and protects mice against obesity and metabolic disorders induced by high-fat diet[J]. Cell Death & Disease, 2022, 13(2): 175. DOI: 10.1038/s41419-022-04636-9.
[6] LACKEY D E, LAZARO R G, LI P P, et al. The role of dietary fat in obesity-induced insulin resistance[J]. American Journal of Physiology. Endocrinology and Metabolism, 2016, 311(6): E989-E997. DOI: 10.1152/ajpendo.00323.2016.
[7] CHANDLER P C, VIANA J B, OSWALD K D, et al. Feeding response to melanocortin agonist predicts preference for and obesity from a high-fat diet[J]. Physiology & Behavior, 2005, 85(2): 221-230. DOI: 10.1016/j.physbeh.2005.04.011.
[8] BASTÍAS-PÉREZ M, SERRA D, HERRERO L. Dietary options for rodents in the study of obesity[J]. Nutrients, 2020, 12(11): 3234. DOI: 10.3390/nu12113234.
[9] LI J L, WU H S, LIU Y T, et al. High fat diet induced obesity model using four strains of mice: Kunming, C57BL/6, BALB/c and ICR[J]. Experimental Animals, 2020, 69(3): 326-335. DOI: 10.1538/expanim.19-0148.
[10] KIMURA Y, YAMADA A, TAKABAYASHI Y, et al. Development of a new diet-induced obesity (DIO) model using Wistar lean rats[J]. Experimental Animals, 2018, 67(2): 155-161. DOI: 10.1538/expanim.17-0079.
[11] YOSHIZAKI K, ASAI M, HARA T. High-fat diet enhances working memory in the Y-maze test in male C57BL/6J mice with less anxiety in the elevated plus maze test[J]. Nutrients, 2020, 12(7): 2036. DOI: 10.3390/nu12072036.
[12] MORINAGA H, MOHRI Y, GRACHTCHOUK M, et al. Obesity accelerates hair thinning by stem cell-centric converging mechanisms[J]. Nature, 2021, 595(7866): 266-271. DOI: 10.1038/s41586-021-03624-x.
[13] NAKAMIZO S, HONDA T, SATO T, et al. High-fat diet induces a predisposition to follicular hyperkeratosis and neutrophilic folliculitis in mice[J]. The Journal of Allergy and Clinical Immunology, 2021, 148(2): 473-485. DOI: 10.1016/j.jaci.2021.02.032.
[14] FERNANDES-DA-SILVA A, MIRANDA C S, SANTANA-OLIVEIRA D A, et al. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancrea[J]. European Journal of Nutrition, 2021, 60(6): 2949-2960. DOI: 10.1007/s00394-021-02542-y.
[15] CATANZARO R, CUFFARI B, ITALIA A, et al. Exploring the metabolic syndrome: nonalcoholic fatty pancreas disease[J]. World Journal of Gastroenterology, 2016, 22(34): 7660-7675. DOI: 10.3748/wjg.v22.i34.7660.
[16] BILAL M, NAWAZ A, KADO T, et al. Fate of adipocyte progenitors during adipogenesis in mice fed a high-fat diet[J]. Molecular Metabolism, 2021, 54: 101328. DOI: 10.1016/j.molmet.2021.101328.
[17] VAN DER HEIJDEN R A, SHEEDFAR F, MORRISON M C, et al. High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice[J]. Aging, 2015, 7(4): 256-68. DOI: 10.18632/aging.100738.
[18] DUAN Y H, ZENG L M, ZHENG C B, et al. Inflammatory links between high fat diets and diseases[J]. Frontiers in Immunology, 2018, 9: 2649. DOI: 10.3389/fimmu.2018.02649.
[19] TAN B L, NORHAIZAN M E. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function[J]. Nutrients, 2019, 11(11): 2579. DOI: 10.3390/nu11112579.
[20] WOODS S C, D’ALESSIO D A, TSO P, et al. Consumption of a high-fat diet alters the homeostatic regulation of energy balance[J]. Physiology & Behavior, 2004, 83(4): 573-578. DOI: 10.1016/j.physbeh. 2004.07.026.
[21] 罗建波, 李军晖, 王海江, 等. 高脂饲料诱导代谢性疾病动物模型[J]. 实验动物与比较医学, 2021, 41(1): 70-78. DOI: 10.12300/j.issn.1674-5817.2021.050.
[22] INOUE K I, TOYODA S, JOJIMA T, et al. Time-restricted feeding prevents high-fat and high-cholesterol diet-induced obesity but fails to ameliorate atherosclerosis in apolipoprotein E-knockout mice[J]. Experimental Animals, 2021, 70(2):194-202. DOI: 10.1538/expanim.20-0112.
[23] 张晓圆, 郭成成, 玉应香, 等. 高脂饲料诱导肥胖胰岛素抵抗大鼠模型的建立[J]. 北京大学学报(医学版), 2020, 52(3): 557-563. DOI: 10.19723/j.issn.1671-167X.2020.03.024.
[24] 李晓静, 刘敏, 王安平, 等. 混合喂养法建立成年营养性肥胖大鼠模型[J]. 现代生物医学进展, 2015, 15(18): 3418-3421. DOI: 10.13241/j.cnki.pmb.2015.18.005.
[25] 罗先慧, 彭真, 向希雄, 等. 不同配方高脂饲料建立Wistar大鼠肥胖模型的比较[J]. 西部医学, 2021, 33(6): 809-812. DOI: 10.3969/j.issn.1672-3511.2021.06.006.
[26] WEI M L, HUANG F J, ZHAO L, et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility[J]. EBioMedicine, 2020, 55: 102766. DOI: 10.1016/j.ebiom.2020.102766.
[27] SÁNCHEZ-NAVARRO A, MARTÍNEZ-ROJAS M Á, CALDIÑO-BOHN R I, et al. Early triggers of moderately high-fat diet-induced kidney damage[J]. Physiological Reports, 2021, 9(14): e14937. DOI: 10.14814/phy2.14937.
[28] DANIELS S J, LEEMING D J, DETLEFSEN S, et al. Addition of trans fat and alcohol has divergent effects on atherogenic diet-induced liver injury in rodent models of steatohepatitis[J]. American Journal of Physiology. Gastrointestinal and Liver Physiology, 2020, 318(3): G410-G418. DOI: 10.1152/ajpgi.00066.2019.
[29] HARIRI N, GOUGEON R, THIBAULT L. A highly saturated fat-rich diet is more obesogenic than diets with lower saturated fat content[J]. Nutrition Research, 2010, 30(9): 632-643. DOI: 10.1016/j.nutres.2010.09.003.
[30] ALI ABD EL-AAL Y, MOHAMED ABDEL-FATTAH D, EL-DAWY AHMED K. Some biochemical studies on trans fatty acid-containing diet[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2019, 13(3): 1753-1757. DOI: 10.1016/j.dsx.2019.03.029.
[31] AKHTAR S, KHALID N, AHMED I, et al. Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: a review[J]. Critical Reviews in Food Science and Nutrition, 2014, 54(12): 1562-1575. DOI: 10.1080/10408398.2011.644353.
[32] NAMIKI M. Nutraceutical functions of sesame: a review[J]. Critical Reviews in Food Science and Nutrition, 2007, 47(7): 651-673. DOI: 10.1080/10408390600919114.
[33] SCLAFANI A, VURAL A S, ACKROFF K. Profound differences in fat versus carbohydrate preferences in CAST/EiJ and C57BL/6J mice: role of fat taste[J]. Physiology & Behavior, 2018, 194: 348-355. DOI: 10.1016/j.physbeh.2018.06.018.
[1] 李银玲, 周洁, 周 晶, 陈俏媛, 曾志棚, 林万华. mSdr9c7基因在C57BL/6J小鼠不同组织中表达水平的研究[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐久成, 李晓艳, 李双群, 张灵均. 基于相容粒的多层次纹理特征图像检索方法[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 186 -187 .
[2] 白德发, 徐欣, 王国长. 函数型数据广义线性模型和分类问题综述[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 15 -29 .
[3] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30 -42 .
[4] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[5] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[6] 王党树, 仪家安, 董振, 杨亚强, 邓翾. 单周期控制的带纹波抑制单元无桥Boost PFC变换器研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 47 -57 .
[7] 喻思婷, 彭靖静, 彭振赟. 矩阵方程的秩约束最小二乘对称半正定解及其最佳逼近[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 136 -144 .
[8] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[9] 阴玉栋, 柯善喆, 黄家艳, 邓梦湘, 刘观艳, 程克光. 1,3-二溴丙烷与醇羧酸和胺一锅法生成烯丙基化合物[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 154 -161 .
[10] 杜丽波, 李金玉, 张晓, 李永红, 潘卫东. 毛红椿皮的化学成分及生物活性研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 162 -172 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发