广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 199-215.doi: 10.16088/j.issn.1001-6600.2022022809

• 综述 • 上一篇    下一篇

纳米催化-表面增强拉曼散射光谱检测环境污染物进展

温桂清1,2*, 梁爱惠2, 蒋治良2   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    2.广西师范大学 环境与资源学院, 广西 桂林 541006
  • 收稿日期:2022-02-28 修回日期:2022-04-14 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 温桂清(1975—), 女, 广西博白人, 广西师范大学教授, 博导。E-mail: gqwen@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(21667006, 21767004); 广西自然科学基金(2018GXNSFAA138019)

Progress of Nanocatalysis Surface-enhanced Raman Scattering Spectroscopy in the Analysis of Environmental Pollutants

WEN Guiqing1,2*, LIANG Aihui2, JIANG Zhiliang2   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-02-28 Revised:2022-04-14 Online:2022-09-25 Published:2022-10-18

摘要: 表面增强拉曼散射(SERS)技术是近年来快速发展的一种分析手段,具有简便、快速、灵敏度高、识别能力强和选择性好等优点。SERS技术的灵敏度和重现性高度依赖于其基底的性质,是目前SERS定量研究的热点。结合本课题组的工作,本文综述了纳米金、纳米银、复合纳米材料等SERS分析测定中常用纳米溶胶基底的特性及其制备方法,重点介绍SERS技术结合适配体反应、免疫反应以及包括分子印迹、微流控、薄层扫描等多种技术在内的其他反应作为提高选择性和灵敏度的手段用于环境污染物分析的研究现状,概括了金属(氧化物)纳米颗粒、碳量子点、共价有机框架(COF)、金属有机框架(MOF)等纳米尺寸物质的催化性能和制备方法,结合纳米酶的催化作用和分子反应放大SERS信号,构建的纳米溶胶SERS定量分析方法具有高灵敏度和高选择性的优点。本文主要针对基底制备、纳米催化等SERS定量研究的热点及其在环境污染物分析中的应用进行综述,希望对SERS定量分析理论研究、SERS技术的应用拓展提供积极参考。

关键词: 表面增强拉曼散射, 基底, 纳米溶胶, 催化放大, 污染物分析

Abstract: Surface-enhanced Raman scattering (SERS) technique is a rapidly developing analytical method in recent years. It has the advantages of simplicity, rapidity, high sensitivity, strong recognition ability and good selectivity. The sensitivity and reproducibility of SERS technology are mainly dependent on the properties of its substrate, which is the hotspot of SERS quantitative research at present. Based on the work of our group, this paper summarized the properties and preparation methods of nanosol substrates commonly used in SERS analysis and determination, such as nanogold, nanosilver and composite nanomaterials. The research status quo of SERS technology combined with aptamer reaction, immune reaction and other reactions including molecular imprinting, microfluidic and thin layer scanning as a means to improve the selectivity and sensitivity of environmental pollutants analysis was introduced. In addition, the catalytic properties of nanoscale materials and preparation methods of the metal (oxide) nanoparticles, carbon quantum dots, covalent organic framework (COF), and metal organic framework (MOF) were summed up. Combining with nanoenzyme catalysis and molecular reaction used for amplification SERS signals, the quantitative analysis method of nanosol SERS had the advantages of high sensitivity and high selectivity. In conclusion, this paper mainly summarized the hot spots of SERS quantitative research such as substrate preparation and nanocatalysis and its application in the analysis of environmental pollutants in order to provide a positive reference for theoretical research on SERS quantitative analysis and expand the application of SERS technology.

Key words: surface-enhanced Raman scattering, substrate, nanosol, catalytic amplification, contaminant analysis

中图分类号: 

  • O657.3
[1]LI D, YAO D M, LI C N, et al. Nanosol SERS quantitative analytical method: a review[J]. Trends in Analytical Chemistry, 2020, 127:115885. DOI:10.1016/j.trac.2020.115885.
[2]FAN M K, ANDRADE G F S, BROLO A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry[J]. Analytica Chimica Acta, 2020, 1097: 1-29. DOI:10.1016/j.aca.2019.11.049.
[3]PILOT R, SIGNORINI R, DURANTE C, et al. A review on surface-enhanced Raman scattering[J]. Biosensors, 2019, 9(2): 57. DOI:10.3390/bios9020057.
[4]MANDAL P, TEWARI B S. Progress in surface enhanced Raman scattering molecular sensing: a review[J]. Surfaces and Interfaces,2022,28:101655. DOI:10.1016/j.surfin.2021.101655.
[5]GAO L Z, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology,2007, 2(9): 577-583. DOI:10.1038/nnano.2007.260.
[6]CHU S N, HUANG W, SHEN F Z, et al. Graphene oxide-based colorimetric detection of organophosphorus pesticides via a multi-enzyme cascade reaction[J]. Nanoscale, 2020, 12(10): 5829-5833. DOI:10.1039/c9nr10862a.
[7]LIU B T, XIE J, MA H, et al. From graphite to graphene oxide and graphene oxide quantum dots[J]. Small, 2017, 13: 1601001. DOI:10.1002/smll.201601001.
[8]李思蓉,黄彦钧,刘嘉睿,等.纳米酶在分析化学中的应用研究:从体外检测到活体分析[J].生物化学与生物物理进展,2018, 45(2): 129-147. DOI:10.16476/j.pibb.2017.0469.
[9]LIEN C W, UNNIKRISHNAN B, HARROUN S G, et al. Visual detection of cyanide ions by membrane-based nanozyme assay[J]. Biosensors and Bioelectronics, 2018, 102: 510-517. DOI:10.1016/j.bios.2017.11.063.
[10]LI C N, WANG H L, LUO Y H, et al. A novel gold nanosol SERS quantitative analysis method for trace Na+ based on carbon dot catalysis[J]. Food Chemistry, 2019, 289: 531-536. DOI:10.1016/j.foodchem.2019.03.032.
[11]LI C N, FAN P D, LIANG A H, et al. Using Ca-doped carbon dots as catalyst to amplify signal to determine ultratrace thrombin by free-label aptamer-SERS method[J]. Materials Science and Engineering: C, 2019, 99: 1399-1406. DOI:10.1016/j.msec.2019.02.080.
[12]李勇, 申文杰. 金属氧化物纳米催化的形貌效应[J].中国科学:化学,2012,42(4):376-389. DOI:10.1007/s11426-012-4565-2.
[13]KUNDU S. A new route for the formation of Au nanowires and application of shape-selective Au nanoparticles in SERS studies[J]. Journal of Materials Chemistry C,2013, 1(4): 831-842. DOI:10.1039/c2tc00315e.
[14]DING S Y, YOU E M, TIAN Z Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chemical Society Review, 2017, 46(13): 4042-4076. DOI:10.1039/c7cs00238f.
[15]ALESSANDRI I, LOMBARDI J R. Enhanced Raman scattering with dielectrics[J]. Chemical Reviews, 2016, 116(24): 14921-14981. DOI:10.1021/acs.chemrev.6b00365.
[16]NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106. DOI:10.1126/science.275.5303.1102.
[17]ZHAN C, CHEN X J, HUANG Y F, et al. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced Raman spectroscopy[J]. Accounts of Chemical Research, 2019, 52(10): 2784-2792. DOI:10.1021/acs.accounts.9b00280.
[18]KLEINMAN S L, SHARMA B, BLABER M G, et al. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy[J]. Journal of the American Chemical Society, 2013, 135(1): 301-308. DOI:10.1021/ja309300d.
[19]BRAUN K, HAULER O, ZHANG D, et al. Probing bias-induced electron density shifts in metal-molecule interfaces via tip-enhanced Raman scattering[J]. Journal of the American Chemical Society, 2021, 143(4): 1816-1821. DOI:10.1021/jacs.0c09392.
[20]CHEN X, LIU P C, HU Z W, et al. High-resolution tip-enhanced Raman scattering probes sub-molecular density changes[J]. Nature Communications, 2019,10(1):2567. DOI:10.1038/s41467-019-10618-x.
[21]GRUENKE N L, CARDINAL M F, MCANALLY M O, et al. Ultrafast and nonlinear surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2016, 45(8):2263-2290. DOI:10.1039/c5cs00763a.
[22]KELLER E L, BRANDT N C, CASSABAUM A A, et al. Ultrafast surfface-enhanced Raman spectroscopy[J].The Analyst, 2015, 140(15): 4922-4931. DOI:10.1039/c5an00869g.
[23]蒋治良,梁爱惠,温桂清,等.环境纳米分析[M].桂林:广西师范大学出版社,2012.
[24]WANG H L, ZHANG Z H, CHEN C Q, et al. Fullerene carbon dot catalytic amplifcation-aptamer assay platform for ultratrace As+3 utilizing SERS/RRS/Abs trifunctional Au nanoprobes[J]. Journal of Hazardous Materials, 2021, 403:123633. DOI:10.1016/j.jhazmat.2020.123633.
[25]ZHOU Z A, BAI X H, LI P S,et al. Silver nanocubes monolayers as a SERS substrate for quantitative analysis[J]. Chinese Chemical Letters, 2021, 32(4): 1497-1501. DOI:10.1016/j.cclet.2020.10.021.
[26]LIU Q W, ZHANG R, YU B G, et al. A highly sensitive gold nanosol SERS aptamer assay for glyphosate with a new COF nanocatalytic reaction of glycol-Au (III)[J]. Sensors and Actuators B: Chemical, 2021, 344: 130288. DOI:10.1016/j.snb.2021.130288.
[27]YAO D M, LI C N, WEN G Q, et al. A highly sensitive and accurate SERS/RRS dual-spectroscopic immunosensor for clenbuterol based on nitrogen/silver-codoped carbon dots catalytic amplification[J]. Talanta, 2020, 209: 120529. DOI:10.1016/j.talanta.2019.120529.
[28]YAO D M, WANG H L, LU S S, et al. On-signal amplifification of silver nanosol RRS/SERS aptamer detection of ultratrace urea by polystyrene nanosphere catalyst[J]. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 2022, 265: 120353. DOI:10.1016/j.saa.2021.120353.
[29]LEE H, LEE J H, JIN S M, et al. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with~1 nm gap and surface-enhanced Raman scattering[J]. Nano Letters, 2013, 13(12): 6113-6121. DOI:10.1021/nl4034297.
[30]金静,张宁,李林甲,等. TiO2/Ag@CDs的构筑及其SERS研究[J].光谱学与光谱分析,2018,38(S1):151-152. DOI:1000-0593(2018)10-0151-02.
[31]葛子盼,张乐,王欣如,等.银包金纳米方块表面增强拉曼散射光谱基底的制备及对塑化剂的检测[J].化工新型材料,2020,48(6):236-241,246. DOI:10.19817/j.cnki.issn1006-3536.2020.06.052
[32]刘晓琳,张峰,代瑞红,等.Au@Ag纳米粒子在农药SERS光谱分析中的应用[J].化学研究与应用,2021,33(8):1448-1455.DOI:1004-1656(2021)08-1448-08.
[33]刘姣,任民,杨宏伟,等.银、金碳纳米复合材料的制备及SERS性能研究[J].化学通报,2021,84(9):913-918. DOI:10.14159/j.cnki.0441-3776.2021.09.006.
[34]廖佳,胡玉玲,李攻科. 基于贵金属纳米粒子的SERS活性基底研究进展[J].分析科学学报,2015,31(1):131-138. DOI:10.13526/j.issn.1006-6144.2015.01.030.
[35]蒋浩,张霞,李立松,等.不同尺寸金纳米颗粒的制备及其SERS性能[J].微纳电子技术,2019,56(2):107-110,139. DOI:10.13250/j.cnki.wndz.2019.02.00.
[36]CIALLA-MAY D, ZHENG X S, WEBER K, et al. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics[J]. Chemical Society Reviews, 2017, 46(13): 3945-3961. DOI:10.1039/c7cs00172j.
[37]MOSIER-BOSS P. A. Review of SERS substrates for chemical sensing[J]. Nanomaterials, 2017, 7(6): 142. DOI:10.3390/nano7060142.
[38]OUYANG H X, LING S M, LIANG A H,et al. A facile aptamer-regulating gold nanoplasmonic SERS detection strategy for trace lead ions[J]. Sensors and Actuators B: Chemical, 2018, 258:739-744. DOI:10.1016/j.snb.2017.12.009.
[39]LI C N, PENG Y T, WANG H D, et al. A nanosol SERS method for quantitative analysis of trace potassium based on aptamer recognition and silver nanorod catalysis of Ag(I)-glucose reaction[J]. Sensors and Actuators B: Chemical, 2019, 281: 53-59. DOI:10.1016/j.snb.2018.10.079.
[40]WANG H D, HUANG X W, WEN G Q, et al. A dual-model SERS and RRS analytical platform for Pb (II) based on Ag-doped carbon dot catalytic amplifcation and aptamer regulation[J]. Scientific Reports, 2019, 9(1): 9991. DOI:10.1038/s41598-019-46426-y.
[41]LI C N, YAO D M, JIANG X, et al. Strong catalysis of silver-doped carbon nitride nanoparticles and their application to aptamer SERS and RRS coupled dual-mode detection of ultra-trace K+[J]. Journal of Materials Chemistry C, 2020, 8(32): 11088-11101. DOI:10.1039/d0tc01581d.
[42]WEN G Q, PAN S Q, GAN M, et al. Aptamer-regulated gold nanosol plasmonic SERS/RRS dimode assay of trace organic pollutants based on TpPa-loaded PdNC catalytic amplifification[J]. ACS Applied Bio Materials, 2021, 4(5): 4582-4590. DOI:10.1021/acsabm.1c00315.
[43]LI D, LI C N, WANG H L, et al. Single-atom Fe catalytic amplification-gold nanosol SERS/RRS aptamer as platform for the quantification of trace pollutants[J]. Microchimica Acta, 2021, 188(5): 175. DOI:10.1007/s00604-021-04828-8.
[44]CHEN S X, LV X W, SHEN J F, et al. Sensitive aptamer SERS and RRS assays for trace oxytetracycline based on the catalytic amplifification of CuNCs[J]. Nanomaterials, 2021, 11: 2501. DOI:10.3390/nano11102501.
[45]WEN G Q, XIAO Y, CHEN S X, et al. A nanosol SERS/RRS aptamer assay of trace cobalt(II) by covalent organic framework BtPD-loaded nanogold catalytic amplifification[J]. Nanoscale Advances, 2021, 3(13): 3846-3859. DOI:10.1039/d1na00208b.
[46]WANG H L, ZHAO Y X, SHI J L, et al. A novel aptamer RRS assay platform for ultratrace melamine based on COF-loaded Pd nanocluster catalytic amplification[J]. Journal of Hazardous Materials, 2022, 423(part B):127263. DOI:10.1016/j.jhazmat.2021.127263.
[47]MUHAMMAD M, HUANG Q. A review of aptamer-based SERS biosensors: design strategies and applications[J]. Talanta, 2021, 227:122188. DOI:10.1016/j.talanta.2021.122188.
[48]LU Y L, ZHONG J, YAO G H, et al. A label-free SERS approach to quantitative and selective detection of mercury(II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles[J]. Sensors and Actuators B: Chemical, 2018,258: 365-372. DOI:10.1016/j.snb.2017.11.110.
[49]庞永丰,罗杨合,吴凤莲,等. 基于DNA酶表面增强拉曼的皮蛋中痕量Pb2+检测方法[J].食品研究与开发,2019,40(24):159-166. DOI:10.12161/j.issn.1005-6521.2019.24.025.
[50]黎小椿,吴凤莲,庞永丰,等. 基于适配体调控碳点催化反应的 SERS 法检测农残啶虫脒[J]. 食品工业科技,2021,42(9):236-244. DOI: 10.13386/j.issn1002-0306.2020050342.
[51]NI J, LIPERT R J, DAWSON G B, et al. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids[J]. Analytical Chemistry,1999,71(21): 4903-4908. DOI:10.1021/ac990616a.
[52]刘小红,邓华,常林,等. 环境雌激素SERS检测的研究进展[J].光谱学与光谱分析,2020,40(10):3038-3047. DOI:10.3964/j.issn.1000-0593(2020)10-3038-10.
[53]WANG R, CHON H, LEE S, et al. Highly sensitive detection of hormone estradiol E2 using surface enhanced Raman scattering based immunoassays for the clinical diagnosis of precocious puberty[J]. ACS Applied Materials and Interfaces, 2016, 8(17):10665-10672. DOI:10.1021/acsami.5b10996.
[54]LIN L K, STANCIU L A. Bisphenol A detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay[J]. Sensors & Actuators B: Chemical, 2018, 276:222-229. DOI:org/10.1016/j.snb.2018.08.068.
[55]SHI Q Q, HUANG J, SUN Y N, et al. A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay[J]. Microchimica Acta, 2018, 185(2): 84. DOI:10.1007/s00604-017-2556-x.
[56]史巧巧,张惠琴,王耀,等.侧向流免疫层析-表面增强拉曼光谱联用技术超灵敏检测猪肉中喹乙醇残留[J].江苏科技大学学报(自然科学版),2021,35(3):89-94. DOI:10.11917/j.issn.1673-4807.2021.03.014.
[57]YOU S M, LUO K, JUNG J Y, et al. Gold nanoparticle-coated starch magnetic beads for the separation, concentration, and SERS-based detection of E. coli O157:H7[J]. ACS Applied Materials and Interfaces, 2020, 12(16), 18292-18300. DOI:10.1021/acsami.0c00418.
[58]LI X Z, YANG T Y, SONG Y T, et al. Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides[J]. Sensors and Actuators B: Chemical,2019,283:230-238. DOI:10.1016/j.snb.2018.11.112.
[59]BHARDWAJ V, SRINVASAN S, MCGORON A J. On-chip surface-enhanced Raman spectroscopy (SERS)-linked immuno-sensor assay (SLISA) for rapid environmental-surveillance of chemical toxins[C]// Proceedings of the SPIE 9486, Advanced Environmental, Chemical, and Biological Sensing Technologies XII. Bellingham: SPIE, 2015: 948611. DOI:10.1117/12.2182591.
[60]GU X F,TIAN S,CHEN Y Y,et al. A SERS-based competitive immunoassay using highly ordered gold cavity arrays as the substrate for simultaneous detection of β-adrenergic agonists[J]. Sensors and Actuators B: Chemical, 2021, 345: 130230. DOI:10.1016/j.snb.2021.130230.
[61]LIU Q, WU F, DI H X,et al. A novel SERS biosensor for ultrasensitive detection of mercury(II) in complex biological samples[J]. Sensors and Actuators B: Chemical, 2022,351: 130934. DOI:10.1016/j.snb.2021.130934.
[62]MOLDOVAN R, IACOB B C, FARCÁU C, et al. Strategies for SERS detection of organochlorine pesticides[J]. Nanomaterials, 2021, 11(2): 304. DOI:10.3390/nano11020304.
[63]YANG Z C, MA C Q, GU J, et al. SERS detection of benzoic acid in milk by using Ag-COF SERS substrate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022,267:120534. DOI:10.1016/j.saa.2021.120534.
[64]XUE J Q, LI D W, QU L L, et al. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering[J]. Analytica Chimica Acta, 2013, 777:57-62. DOI:10.1016/j.aca.2013.03.037.
[65]孙文,张芹,陈小意.基于聚丙烯酰胺分子印迹包金核壳纳米粒子对食用油中黄曲霉素B1的SERS检测[J].食品工业科技,2017,38(20):276-279. DOI:10.13386/j.issn1002-0306.2017.20.049.
[66]WANG Z W, YAN R X, LIAO S W, et al. In situ reduced silver nanoparticles embedded molecularly imprinted reusable sensor for selective and sensitive SERS detection of bisphenol A[J]. Applied Surface Science, 2018, 457(1): 323-331. DOI:10.1016/j.apsusc.2018.06.283.
[67]FU C C, WANG Y, CHEN G, et al. Aptamer-based surface-enhanced Raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection[J]. Analytical Chemistry, 2015, 87(19): 9555-9558. DOI:10.1021/acs.analchem.5b02508.
[68]刘向源,孙丹,齐国华,等.基于微流控芯片的层流技术和SERS方法定量葡萄糖[J].光谱学与光谱分析,2016,36(10):305-306.
[69]常颖,常化仿,赵阳,等.表面增强拉曼结合微流控检测甲基苯丙胺[J].中国法医学杂志,2020,35(6):628-631. DOI:10.13618/j.issn.1001-5728.2020.06.014
[70]刘桂花,刘福堂,孙晶,等. 硫代艾地那非薄层色谱-表面增强拉曼光谱定性研究[J].药学研究,2021,40(11):721-725. DOI:10.13506/j.cnki.jpr.2020.11.005.
[71]朱青霞, 曹永兵,曹颖瑛,等. TLC-SERS法快速检测降压类中药中非法添加的四种化学成分[J].光谱学与光谱分析,2014,34(4):990-993. DOI:10.3964/j.issn.1000-0593(2014)04-0990-04.
[72]李重宁,潘宏程,刘庆业,等.多肽探针结合纳米银催化反应-吸收测定HCG[J].广西师范大学学报(自然科学版),2017,35(4):91-97. DOI:10.16088/j.issn.1001-6600.2017.04.01.
[73]汤雪萍,王耀辉,刘庆业,等.纳米银催化共振瑞利散射光谱检测痕量肼[J]. 广西师范大学学报(自然科学版),2015,33(2):88-95. DOI:10.16088/j.issn.1001-6600.2015.02.014.
[74]DONG J C, LIANG A H, LUO Y H, et al. A highly sensitive and selective resonance Rayleigh scattering method for Hg2+ based on the nanocatalytic amplifification[J]. Arabian Journal of Chemistry, 2019, 12(18): 2293-2299. DOI:10.1016/j.arabjc.2015.02.020.
[75]LI X, JIANG X, LIU Q Y, et al. Using N-doped carbon dots prepared rapidly by microwave digestion as nanoprobes and nanocatalysts for fluorescence determination of ultratrace isocarbophos with label-free aptamers[J]. Nanomaterials, 2019, 9: 223. DOI:10.3390/nano9020223.
[76]YAO D M, LI C N, LIANG A H, et al. A facile SERS strategy for quantitative analysis of trace glucose coupling glucose oxidase and nanosilver catalytic oxidation of tetramethylbenzidine[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 216: 146-153. DOI:10.1016/j.saa.2019.03.026.
[77]WANG H L, LIU Q W, CHEN C Q, et al. SERS and RRS spectral detection of ultratrace sulfite based on PtPd nanoalloy catalytic amplification[J]. Plasmonics, 2020, 15: 2043-2052. DOI:10.1007/s11468-020-01226-3.
[78]YU F X, HUANG H B, SHI J L, et al. A new gold nanoflower sol SERS method for trace iodine ion based on catalytic amplifification[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 255: 119738. DOI:10.1016/j.saa.2021.119738.
[79]OUYANG H X,LI C N,LIU Q Y,et al. Resonance Rayleigh scattering and SERS spectral detection of trace Hg(II) based on the gold nanocatalysis[J]. Nanomaterials,2017,17(5): 114. DOI:10.3390/nano7050114.
[80]YAO D M, LIANG A H, JIANG Z L. A fluorometric clenbuterol immunoassay using sulfur and nitrogen doped carbon quantum dots[J]. Microchimica Acta, 2019, 186: 323. DOI:10.1007/s00604-019-3431-8.
[81]ZHANG Z H, LI J, WANG X Y, et al. Aptamer-mediated N/Ce-doped carbon dots as a fluorescent and resonance Rayleigh scattering dual mode probe for arsenic(III)[J]. Microchimica Acta, 2019, 186: 638. DOI:10.1007/s00604-019-3764-3.
[82]WANG L B, LI C N, LUO Y H, et al. Silver nanosol SERS quantitative analysis of ultratrace biotin coupled N-doped carbon dots catalytic amplification with affinity reaction[J]. Food Chemistry, 2020, 317: 126433. DOI:10.1016/j.foodchem.2020.126433.
[83]OUYANG H X, LIANG A H, JIANG Z L. Fullerol nanocatalysis and trimodal Surface plasmon resonance for the determination of isocarbophos[J]. Frontiers in Chemistry, 2020, 8: 673. DOI:10.3389/fchem.2020.00673.
[84]LI C N, LIU Q W, WANG X Y, et al. An ultrasensitive K+ fluorescence/absorption di-mode assay based on highly co-catalysiscarbon dot nanozyme and DNAzyme[J]. Microchemical Journal, 2020, 159: 105508. DOI:10.1016/j.microc.2020.105508.
[85]ZHANG Z H, LEI K N, LI C N, et al. A new and facile nanosilver SPR colored method for ultratrace arsenic based on aptamer regulation of Au-doped carbon dot catalytic amplifification[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 232: 118174. DOI:10.1016/j.saa.2020.118174.
[86]BAI H Y, WANG H L, BAI F Z, et al. A simple and sensitive nanogold RRS/Abs dimode sensor for trace As3+ based on aptamer controlled nitrogen doped carbon dot catalytic amplification[J]. Molecules, 2021, 26: 5930. DOI:10.3390/molecules26195930.
[87]LIANG A H,LI, X,ZHANG, X H, et al. A sensitive SERS quantitative analysis method for Ni2+ by the dimethylglyoxime reaction regulating a graphene oxide nanoribbon catalytic gold nanoreaction[J]. Luminescence : the Journal of Biological and Chemical Luminescence,2018,33(6):1033-1039. DOI:10.1002/bio.3504.
[88]WANG X, WANG Y X, YING Y B. Recent advances in sensing applications of metal nanoparticle/metal-organic framework composites[J]. Trends in Analytical Chemistry, 2021, 143: 116395. DOI:10.1016/j.trac.2021.116395.
[89]PAN S Q, YAO D M, LIANG A H, et al. New Ag-doped COF catalytic amplifification aptamer analytical platform for trace small molecules with the resonance Rayleigh scattering technique[J]. ACS Applied Materials and Interfaces, 2020, 12: 12120-12132. DOI:10.1021/acsami.0c00205.
[90]WANG H L, LIANG A H, WEN G Q, et al. A simple SPR absorption method for ultratrace Pb2+ based on DNA zyme-COFPd nanocatalysis of Ni-P alloy reaction[J]. Sensors and Actuators B: Chemical, 2021, 330: 129381. DOI:10.1016/j.snb.2020.129381.
[91]LIANG A H, ZHAO Y X, HUANG X F, et al. A facile and sensitive fluorescence assay for glucose via hydrogen peroxide based on MOF-Fe catalytic oxidation of TMB[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 265: 120376. DOI:10.1016/j.saa.2021.120376.
[92]RODRIGUES T S, DA SILVA A G M, CAMARGO P H C. Nanocatalysis by noble metal nanoparticles:controlled synthesis for the optimization and understanding of activities[J]. Journal of Materials Chemistry A, 2019,7: 5857-5874. DOI:10.1039/c9ta00074g.
[93]GELLÉ A, JIN T, DE LA GARZA L, et al. Applications of plasmon-enhanced nanocatalysis to organic transformations[J]. Chemical Review, 2020, 120(2): 986-1041. DOI:10.1021/acs.chemrev.9b00187.
[94]PACCHIONI G. From Li clusters to nanocatalysis: a brief tour of 40 years of cluster chemistry[J]. Inorganica Chimica Acta, 2022,530:120680. DOI:10.1016/j.ica.2021.120680.
[95]LU L F, ZOU S H, FANG B Z. The critical impacts of ligands on heterogeneous nanocatalysis: a review[J]. ACS Catalysis, 2021, 11(10): 6020-6058. DOI:10.1021/acscatal.1c00903.
[96]NISHIDA Y, SATO K, YAMAMOTO T, et al. Facile synthesis of size-controlled Rh nanoparticles via microwave-assisted alcohol reduction and their catalysis of CO oxidation[J]. Chemistry Letters, 2017, 46(8):1254-1257. DOI:10.1246/cl.170440.
[97]JIN M S,ZHANG H, XIE Z X, et al. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation[J]. Energy and Environmental Science, 2012, 5(4): 6352-6357. DOI:10.1039/c2ee02866b.
[98]LI D, LI C N, LIANG A H, et al. SERS and fluorescence dual-mode sensing trace hemin and K+ based on G-quarplex/hemin DNAzyme catalytic amplifification[J]. Sensors and Actuators B: Chemical, 2019, 297: 126799. DOI:10.1016/j.snb.2019.126799.
[1] 姜方洁, 付玉, 吴桂生, 杨丽萍, 唐贺, 邓科, 林万华, 罗怀容. 应激诱导小鼠杏仁核theta波段下调介导焦虑反应[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 162-167.
[2] 蒋治良, 韦燕燕, 王盛棉, 李昆, 梁爱惠. 用2-巯基吡啶做分子探针SERRS光谱测定痕量金[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 218-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[7] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[8] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[9] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[10] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发