广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 216-226.doi: 10.16088/j.issn.1001-6600.2022030310

• 综述 • 上一篇    下一篇

荧光偏振技术在生化分析检测中的研究进展

张怡雯1,2, 韦汶言1,2, 赵晶瑾1,2*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    2.广西师范大学 环境与资源学院, 广西 桂林 541006
  • 收稿日期:2022-03-03 修回日期:2022-04-19 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 赵晶瑾(1984—), 女, 湖南慈利人, 广西师范大学教授, 博士。E-mail: jzhao12@163.com
  • 基金资助:
    国家自然科学基金(21966009)

Review on the Applications of Fluorescence Polarization and Its Biochemical Analysis

ZHANG Yiwen1,2, WEI Wenyan1,2, ZHAO Jingjin1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-03-03 Revised:2022-04-19 Online:2022-09-25 Published:2022-10-18

摘要: 荧光偏振技术是根据体系中荧光基团与检测分子结合前后的偏振信号变化,对分子间相互作用进行研究或定量检测目标分子的一种分析方法,具有灵敏度高、分析快速、操作简便和易实现高通量测定等多种优势,同时可与其他分析检测技术联用,在生化分析和疾病诊断等领域得到广泛应用。近年来,随着现代分析技术的发展,核酸和材料科学等领域的技术进步,许多具有更高分析检测性能的荧光偏振技术相继被报道。深入探究稳定性强、成本低廉以及功能多样的荧光偏振检测技术是未来研究的发展趋势。本文主要介绍近年来荧光偏振技术检测生物小分子、核酸、蛋白质、生物酶、金属离子、农药以及生化相关物质等方面的应用,并对荧光偏振技术的前景进行展望。

关键词: 荧光偏振, 生化分析, 生物分子, 信号放大, 核酸

Abstract: Fluorescence polarization (FP) is an analytical method for the study of intermolecular interaction or quantitative detection of target molecules through the changes of FP signals before and after the combination of fluorescent groups and other molecules in the system. It has significant advantages such as high sensitivity, rapid analysis, easy operation and high throughput, which can be combined with other analytical technologies, and has been widely used in the fields of biochemical analysis and disease diagnosis. In recent years, with the development of modern analytical techniques and technological advances in the fields of nucleic acid and material science, many FP assays with higher analytical performance have been reported. The trend of future researches is to deeply explore the fluorescence polarization detection technology with strong stability, low cost and various functions. This review,mainly summarize the recent advances of FP and their analytical applications in detection of biological small molecules, nucleic acids, proteins, biological enzymes, metal ions, pesticides and biochemically related substances. Moreover, the prospect for future development of FP is provided.

Key words: fluorescent polarization, biochemical analysis, biomolecules, signal amplification, nucleic acid

中图分类号: 

  • O657
[1]SMITH D S, EREMIN S A. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules[J]. Analytical and Bioanalytical Chemistry, 2008, 391(5): 1499-1507. DOI: 10.1007/s00216-008-1897-z.
[2]JAMESON D M, ROSS J A. Fluorescence polarization/anisotropy in diagnostics and imaging[J]. Chemical Reviews, 2010, 110(5): 2685-2708. DOI: 10.1021/cr900267p.
[3]ZHANG H Y, YANG S P, DE RUYCK K, et al. Fluorescence polarization assays for chemical contaminants in food and environmental analyses[J]. Trends in Analytical Chemistry, 2019, 114: 293-313. DOI: 10.1016/j.trac.2019.03.013.
[4]PERRIER S, GUIEU V, CHOVELON B, et al. Panoply of fluorescence polarization/anisotropy signaling mechanisms for functional nucleic acid-based sensing platforms[J]. Analytical Chemistry, 2018, 90(7): 4236-4248. DOI: 10.1021/acs.analchem.7b04593.
[5]XIAO X, ZHEN S J. Recent advances in fluorescence anisotropy/polarization signal amplification[J]. RSC Advances, 2022, 12(11): 6364-6379. DOI: 10.1039/D2RA00058J.
[6]LI Y P, ZHAO Q. Aptamer structure switch fluorescence anisotropy assay for small molecules using streptavidin as an effective signal amplifier based on proximity effect[J]. Analytical Chemistry, 2019, 91(11): 7379-7384. DOI: 10.1021/acs.analchem.9b01253.
[7]ZHANG M, LE H N, WANG P, et al. A versatile molecular beacon-like probe for multiplexed detection based on fluorescence polarization and its application for a resettable logic gate[J]. Chemical Communications, 2012, 48(80): 10004-10006. DOI: 10.1039/c2cc35185d.
[8]HUANG Y, LIU X Q, ZHANG L L, et al. Nicking enzyme and graphene oxide-based dual signal amplification for ultrasensitive aptamer-based fluorescence polarization assays[J]. Biosensors and Bioelectronics, 2015, 63: 178-184. DOI: 10.1016/j.bios.2014.07.036.
[9]ZHANG M, GUAN Y M, YE B C. Ultrasensitive fluorescence polarization DNA detection by target assisted exonuclease III-catalyzed signal amplification[J]. Chemical Communications, 2011, 47(12): 3478-3480. DOI: 10.1039/c0cc05703g.
[10]ZHU Q Y, LI H, XU D K. et al. Sensitive and enzyme-free fluorescence polarization detection for miRNA-21 based on decahedral sliver nanoparticles and strand displacement reaction[J]. RSC Advances, 2020, 10(29): 17037-17044. DOI: 10.1039/D0RA01950J.
[11]赵晨, 张亮, 倪原. 荧光偏振技术在生命科学中的研究进展[J]. 现代生物医学进展, 2010, 10(16): 3154-3156. DOI: 10.13241/j.cnki.pmb.2010.16.001.
[12]HENDRICKSON O D, TARANOVA N A, ZHERDEV A V, et al. Fluorescence polarization-based bioassays: new horizons[J]. Sensors, 2020, 20(24): 7132. DOI: 10.3390/s20247132.
[13]HALL M D, YASGAR A, PERVEA T, et al. Fluorescence polarization assays in high-throughput screening and drug discovery: a review[J]. Methods and Applications in Fluorescence, 2016, 4(2): 022001. DOI: 10.1088/2050-6120/4/2/022001.
[14]张晓辉, 王璇, 杨娜, 等. 一种新型快速检测半胱氨酸的荧光探针[J]. 分析试验室, 2022, 41(1): 55-58. DOI: 10.13595/j.cnki.issn1000-0720.2021.022003.
[15]JIANG Y X, TIAN J N, HU K, et al. Sensitive aptamer-based fluorescence polarization assay for mercury(II) ions and cysteine using silver nanoparticles as a signal amplifier[J]. Microchimica Acta, 2014, 181(11): 1423-1430. DOI: 10.1007/s00604-014-1296-4.
[16]RUTA J, PERRIER S, RAVELET C, et al. Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection[J]. Analytical Chemistry, 2009, 81(17): 7468-7473. DOI: 10.1021/ac9014512.
[17]FAN Y Y, MOU Z L, WANG M, et al. Chimeric aptamers-based and MoS2 nanosheet-enhanced label-free fluorescence polarization strategy for adenosine triphosphate detection[J]. Analytical Chemistry, 2018, 90(22): 13708-13713. DOI: 10.1021/acs.analchem.8b04107.
[18]MA Y Y, YIN J L, LI G H, et al. Simultaneous sensing of nucleic acid and associated cellular components with organic fluorescent chemsensors[J]. Coordination Chemistry Reviews, 2020, 406: 213144. DOI: 10.1016/j.ccr.2019.213144.
[19]LIANG S P, HE G C, TIAN J N, et al. Fluorescence polarization gene assay for HIV-DNA based on the use of dendrite-modified gold nanoparticles acting as signal amplifiers[J]. Microchimica Acta, 2018, 185(2): 119. DOI: 10.1007/s00604-018-2673-1.
[20]ZHAO J J, CHU Z D, JIN X, et al. A fluorescence polarization assay for nucleic acid based on the amplification of hybridization chain reaction and nanoparticles[J]. Sensors and Actuators B: Chemical, 2015, 209: 116-121. DOI: 10.1016/j.snb.2014.11.102.
[21]LI X T, HUANG N, ZHANG L L, et al. A T7 exonuclease assisted dual-cycle signal amplification assay of miRNA using nanospheres-enhanced fluorescence polarization[J]. Talanta, 2019, 202: 297-302. DOI: 10.1016/j.talanta.2019.05.006.
[22]NISHIYAMA K, TAKAHASHI K, FUKUYAMA M, et al. Facile and rapid detection of SARS-CoV-2 antibody based on a noncompetitive fluorescence polarization immunoassay in human serum samples[J]. Biosensors and Bioelectronics, 2021, 190: 113414. DOI: 10.1016/j.bios.2021.113414.
[23]ZHANG D P, ZHAO Q, ZHAO B L, et al. Fluorescence anisotropy reduction of allosteric aptamer for sensitive and specific protein signaling[J]. Analytical Chemistry, 2012, 84(7): 3070-3074. DOI: 10.1021/ac3004133.
[24]LI X, DING X L, LI Y F, et al. A TiS2 nanosheet enhanced fluorescence polarization biosensor for ultra-sensitive detection of biomolecules[J]. Nanoscale, 2016, 8(18): 9852-9860. DOI: 10.1039/c6nr00946h.
[25]GAO Y F, XU J, LI B X, et al. Nanoparticle-aided amplification of fluorescence polarization for ultrasensitively monitoring activity of telomerase[J]. ACS Applied Materials and Interfaces, 2016, 8(22): 13707-13713. DOI: 10.1021/acsami.6b02271.
[26]ZOU M J, CHEN Y, XU X, et al. The homogeneous fluorescence anisotropic sensing of salivary lysozyme using the 6-carboxyfluorescein-labeled DNA aptamer[J]. Biosensors and Bioelectronics, 2012, 32(1): 148-154. DOI: 10.1016/j.bios.2011.11.052.
[27]ZHANG X L, XU J G, XING X G, et al. Framework nucleic acid-wrapped protein-inorganic hybrid nanoflowers with three-stage amplified fluorescence polarization for terminal deoxynucleotidyl transferase activity biosensing[J]. Biosensors and Bioelectronics, 2021,193: 113564. DOI: 10.1016/j.bios.2021.113564.
[28]CHOI J W, VASAMSETTI B M K, CHOO J, et al. Analysis of deoxyribonuclease activity by conjugation-free fluorescence polarisation in sub-nanolitre droplets[J]. Analyst, 2020, 145: 3222-3228. DOI: 10.1039/C9AN02380A.
[29]ZHAO J J, MA Y F, KONG R M, et al. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity[J]. Analytica Chimica Acta, 2015, 887: 216-223. DOI: 10.1016/j.aca.2015.07.006.
[30]薛丹枫. 生物化学技术在铅检测中的应用探究[J]. 云南化工, 2021, 48(11): 95-97. DOI: 10.3969/j.issn.1004-275X.2021.11.30.
[31]YIN B C, ZUO P, HUO H, et al. DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay[J]. Analytical Biochemistry, 2010, 401(1): 47-52. DOI: 10.1016/j.ab.2010.02.014.
[32]WANG Z X, PEI X J, LI N, et al. Phosphate-perylene modified G-quadruplex probes for the detection of Pb2+ using fluorescence anisotropy[J]. Journal of Materials Chemistry B, 2016, 4: 4330-4336. DOI: 10.1039/c6tb00539j.
[33]HU P, YANG B. Cleavable DNA-protein hybrid molecular beacon: a novel efficient signal translator for sensitive fluorescence anisotropy bioassay[J]. Talanta, 2016, 147: 276-281. DOI: 10.1016/j.talanta.2015.10.003.
[34]祖丽德孜·努兰, 沈鉴, 冷晓婷, 等. 硫胺素-三维荧光法测定水中汞离子的研究[J]. 光谱学与光谱分析, 2021, 41(6): 1846-1851. DOI: 10.3964/j.issn.1000-0593(2021)06-1846-06.
[35]YE B C, YIN B C. Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles[J]. Angewandte Chemie International Edition, 2008, 47(44): 8386-8389. DOI: 10.1002/ange.200803069.
[36]ZHANG J N, TIAN J N, HE Y L, et al. A K+-mediated G-quadruplex formation enhancement fluorescence polarization system based on quantum dots for detection of Hg2+ and biothiols[J]. Chemical Communications, 2014, 50(16): 2049-2051. DOI: 10.1039/c3cc49424a.
[37]LIAO S Q, ZHAO J J, QIN Y F, et al. A novel fluorescence polarization assay for copper ions based on DNA-templated click chemistry and amplification of nanoparticles[J]. RSC Advances, 2017, 7(88): 55668-55672. DOI: 10.1039/c7ra11159b.
[38]YAKUSHEVA A, MURATOV D S, ARKHIPOV D, et al. Water-soluble carbon quantum dots modified by amino groups for polarization fluorescence detection of copper(II) ion in aqueous media[J]. Processes, 2020, 8(12): 1573. DOI: 10.3390/pr8121573.
[39]WANG G K, SHAO C W, YAN C L, et al. Fluorescence polarization sensor platform based on gold nanoparticles for the efficient detection of Ag(I)[J]. Journal of Luminescence, 2019, 210: 21-27. DOI: 10.1016/j.jlumin.2018.12.015.
[40]QI L, YAN Z, HUO Y, et al. MnO2 nanosheet-assisted ligand-DNA interaction-based fluorescence polarization biosensor for the detection of an Ag+ ions[J]. Biosensors and Bioelectronics, 2017, 87: 566-571. DOI: 10.1016/j.bios.2016.08.093.
[41]ZHANG D P, WANG H L. Fluorescence anisotropy reduction of an allosteric G-rich oligonucleotide for specific silver ion and cysteine detection based on G-Ag+-G base pair[J]. Analytical Chemistry, 2019, 91(22): 14538-14544. DOI: 10.1021/acs.analchem.9b03556.
[42]SHI W Y, JI X L, ZHANG S T, et al. Fluorescence chemosensory ultrathin films for Cd2+ based on the assembly of benzothiazole and layered double hydroxide[J]. The Journal of Physical Chemistry C, 2011, 115(42): 20433-20441. DOI: 10.1021/jp2063035.
[43]李星星, 陶亮. 艰难梭菌感染:抗生素滥用引发的全球公共健康威胁[J].科学, 2021, 73(3): 40-42,49,4.
[44]柳颖, 郭逸蓉, 朱国念. 荧光偏振免疫分析在农药残留检测中的研究进展[J]. 分析仪器, 2016(S1): 64-68.
[45]LEI H T, XUE G, YU C F, et al. Fluorescence polarization as a tool for the detection of a widely used herbicide, butachlor, in polluted waters[J]. Analytical Methods, 2011, 3(10): 2334-2340. DOI: 10.1039/clay05347g.
[46]雷红涛, 吴青, 卢蓝蓝, 等. 置换型荧光偏振免疫检测除草剂丁草胺[J]. 分析化学, 2013, 41(7): 1031-1036. DOI: 10.3724 /SP.J.1096.2013.30068.
[47]XU Z L, WANG Q, LEI H T, et al. A simple, rapid and high-throughput fluorescence polarization immunoassay for simultaneous detection of organophosphorus pesticides in vegetable and environmental water samples[J]. Analytica Chimica Acta, 2011, 708(1/2): 123-129. DOI: 10.1016/j.aca.2011.09.040.
[48]LI M, LIU X F, HUA X D, et al. Fluorescence polarization immunoassay for highly efficient detection of clothianidin in agricultural samples[J]. Analytical Methods, 2014, 6(16): 6541-6547. DOI: 10.1039/c4ay00987h.
[49]YANG J Y, ZHANG Y, WANG H, et al. Development of fluorescence polarisation immunoassay for carbofuran in food and environmental water samples[J]. Food and Agricultural Immunology, 2015, 26(3): 340-355. DOI: 10.1080/09540105.2014.914890.
[50]MA M, CHEN M, FENG L, et al. Fluorescence polarization immunoassay for highly efficient detection of imidaclothiz in agricultural samples[J]. Food Analytical Methods, 2016, 9(9): 2471-2478. DOI: 10.1007/s12161-016-0434-5.
[51]LIU Y, LIU R, BORODULEVA A, et al. A highly specific and sensitive fluorescence polarization immunoassay for the rapid detection of triazophos residue in agricultural products[J]. Analytical Methods, 2016,8: 6636-6644. DOI: 10.1039/c6ay00908e.
[52]BORODULEVA A Y, WU J, YANG Q Q, et al. Development of fluorescence polarization immunoassays for parallel detection of pesticides carbaryl and triazophos in wheat grains[J]. Analytical Methods, 2017,9(48): 6814-6822. DOI: 10.1039/c7ay02091k.
[53]DING Y, CHEN H, YANG Q, et al. A fluorescence polarization immunoassay for detection of thiacloprid in environmental and agricultural samples[J]. RSC Advances, 2019, 9(63): 36825-36830. DOI: 10.1039/c9ra04776j.
[54]盛恩泽. 乙氧氟草醚单克隆抗体的制备及其免疫分析方法研究[D].南京: 南京农业大学, 2018.
[55]BORODULEVA A Y, EREMIN S A. Determination of 2,4-dichlorophenoxyacetic acid in cereals by fluorescence polarization immunoassay[J]. Journal of Analytical Chemistry, 2016, 71(9): 949-954. DOI: 10.1134/S1061934816090045.
[56]MURTAZINA N R, EREMIN S A, MOZOLEVA O V, et al. Fluorescent polarization immunoassay for sulphadiazine using a high specificity antibody[J]. International Journal of Food Science and Technology, 2004, 39(8): 879-889. DOI: 10.1111/j.1365-2621.2004.00862.x.
[57]SHIM W B, YAKOVLEVA M E, KIM K Y, et al. Development of fluorescence polarization immunoassay for the rapid detection of 6-chloronicotinic acid: main metabolite of neonicotinoid insecticides[J]. Journal of Agricultural and Food Chemistry, 2009, 57(3): 791-796. DOI: 10.1021/jf802647v.
[58]蔡卫民, 卢嘉骐, 谈恒山,等. 人血清中庆大霉素浓度的荧光偏振免疫分析法[J]. 中国药学杂志,1990,25(1): 25-27,64.
[59]郭志磊, 范捷, 于洋. 固相萃取-HPLC测定人血清万古霉素、去甲万古霉素浓度及其与荧光偏振免疫法测定结果的比较[J]. 中国现代应用药学,2015,32(4): 478-482. DOI: 10.13748/j.cnki.issn1007-7693.2015.04.023.
[60]SALSABILA A, AZAM M, SUGITO H, et al. Fluorescence polarization method for detection of lard mixed with olive oil[J]. Journal of Physics: Conference Series, 2021, 1825: 012076. DOI: 10.1088/1742-6596/1825/1/012076.
[61]宋佩, 孟萌, EREMIN S A, 等. 荧光偏振免疫分析方法快速检测沙拉沙星残留[J]. 分析化学, 2012, 40(8): 1247-1251. DOI: 10.3724/SP.J.1096.2012.20010.
[62]CHEN J H, LV S W, WANG Q, et al. A specific and high-throughput fluorescence polarization immunoassay for surveillance screening of clinafloxacin in milk[J]. Food Analytical Methods, 2015, 8(6): 1468-1476. DOI: 10.1007/s12161-014-0033-2.
[63]高月. 新霉素荧光偏振检测方法的建立及应用[D]. 洛阳: 河南科技大学, 2017.
[64]MA P F, GUO H L, DUAN N, et al. Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer[J]. Talanta, 2021,230(8): 122349. DOI: 10.1016/j.talanta.2021.122349.
[65]QIN Y F, YE G J, LIANG H, et al. An amplified fluorescence polarization assay for sensitive sensing of organophosphorus pesticides via MnO2 nanosheets[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 269: 120759. DOI: 10.1016/j.saa.2021.120759.
[66]ZHANG Z, TANG C H, ZHAO L B, et al. Aptamer-based fluorescence polarization assay for separation-free exosome quantification[J]. Nanoscale, 2019, 11: 10106-10113. DOI: 10.1039/C9NR01589B.
[67]HUANG Y, LIU X Q, SHI M, et al. Ultrasensitive fluorescence polarization aptasensors based on exonuclease signal amplification and polystyrene nanoparticle amplification[J]. Chemistry, an Asian Journal, 2014, 9(10): 2755-2760. DOI: 10.1002/asia.201402563.
[68]JIN X, ZHAO J J, ZHANG L L, et al. An enhanced fluorescence polarization strategy based on multiple protein-DNA-protein structures for sensitive detection of PDGF-BB[J]. RSC Advances, 2014, 4(13): 6850-6853. DOI:10.1039/c3ra44092c.
[69]HE Q Y, CUI X P, SHEN D, et al. Development of a simple, rapid and high-throughput fluorescence polarization immunoassay for glycocholic acid in human urine[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158: 431-437. DOI: 10.1016/j.jpba.2018.06.023.
[70]NIKOLOVSKA-COLESKA Z, WANG R X, FANG X L, et al. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization[J]. Analytical Biochemistry, 2004, 332(2): 261-273. DOI: 10.1016/j.ab.2004.05.055
[71]JANIK E, NIEMCEWICZ M, PODOGROCKI M, et al. The existing methods and novel approaches in mycotoxins’ detection[J]. Molecules, 2021, 26(13): 3981. DOI: 10.3390/molecules26133981.
[72]NAKAMURA A, AOYAGI M, FUKUYAMA M, et al. Determination of deoxynivalenol in wheat, barley, corn meal, and wheat-based products by simultaneous multisample fluorescence polarization immunoassay using a portable analyzer[J]. ACS Food Science and Technology, 2021,1(9): 1623-1628. DOI: 10.1021/acsfoodscitech.1c00244.
[73]HUANG X R, TANG X Q, JALLOW A, et al. Development of an ultrasensitive and rapid fluorescence polarization immunoassay for ochratoxin A in rice[J]. Toxins, 2020, 12(11): 682. DOI:10.3390/toxins12110682.
[74]WANG F, CAI J, EREMIN S A, et al. Fluorescence polarization immunoassay for Alternaria mycotoxin tenuazonic acid detection and molecular modeling studies of antibody recognition[J]. Food Analytical Methods, 2018, 11: 2455-2462. DOI: 10.1007/s12161-018-1236-8.
[75]LI Y P, ZHANG N, WANG H L, et al. Fluorescence anisotropy-based signal-off and signal-on aptamer assays using lissamine rhodamine B as a label for ochratoxin A[J]. Journal of Agricultural and Food Chemistry, 2020, 68(14): 4277-4283. DOI: 10.1021/acs.jafc.0c00549.
[76]HUANG H K, QIN J, HU K, et al. Novel autonomous protein-encoded aptamer nanomachines and isothermal exponential amplification for ultrasensitive fluorescence polarization sensing of small molecules[J]. RSC Advances, 2016, 6(89): 86043-86050. DOI: 10.1039/c6ra17959b.
[77]YE H, LU Q Q, DUAN N, et al. GO-amplified fluorescence polarization assay for high-sensitivity detection of aflatoxin B1 with low dosage aptamer probe[J]. Analytical and Bioanalytical Chemistry, 2019, 411(5): 1107-1112. DOI: 10.1007/s00216-018-1540-6.
[78]周俊, 陈舒曼, 邢兵, 等. 正常来源CD4+CD25+细胞在小鼠肺癌模型中的抗肿瘤作用[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 191-199. DOI: 10.16088/j.issn.1001-6600.2021022202.
[79]石玉玲, 胡祖权, 闵海, 等. 渗透压对未成熟树突状细胞生物力学特性和免疫学功能的影响[J]. 医用生物力学, 2020, 35(2): 202-207. DOI: 10.16156/j.1004-7220.2020.02.012.
[80]邱炜, 黄瑾, 杨颖颖, 等. 不同pH对结肠癌CT26细胞生物力学特性的影响[J]. 贵州医科大学学报, 2020, 45(11): 1251-1254,1282. DOI: 10.19367/j.cnki.2096-8388.2020.11.003.
[81]荣青秀. 二甲基甲酰胺致H9c2心肌细胞膜损伤研究[D]. 合肥: 安徽医科大学, 2017.
[82]KANEKO T, MATSUI H, SHIMOKAWA O, et al. Cellular membrane fluidity measurement by fluorescence polarization in indomethacin-induced gastric cellular injury in vitro[J]. Journal of Gastroenterology, 2007, 42(12): 939-946. DOI: 10.1007/s00535-007-2116-y.
[83]谢东琴, 冯建军, 郭松林, 等. 镥铕共发光时间分辨荧光免疫法检测嗜水气单胞菌[J]. 分析试验室, 2021, 40(3): 286-290. DOI: 10.13595/j.cnki.issn1000-0720.2020.080601.
[84]袁航, 丁同英. 食品中主要真菌毒素检测方法研究进展[J]. 食品与机械, 2020, 36(12): 203-206. DOI: 10.13652/j.issn.1003-5788.2020.12.040.
[85]孙怡雯, 汤诗吟, SUHLING K, 等. 基于时间分辨荧光各向异性成像的罗丹明B溶液粘度特性研究[J].光电子·激光, 2013, 24(11): 2254-2258. DOI: 10.16136/j.joel.2013.11.016.
[86]汪海林, 赵柏林, 章大鹏, 等. 毛细管电泳-激光诱导荧光偏振分析与RecA动态组装研究[C]∥中国化学会第30届学术年会摘要集——第二十三分会: 复杂样品分离分析. 北京:中国化学会, 2016: 77.
[1] 董金超, 温桂清, 刘庆业, 梁爱惠, 蒋治良. 适配体修饰纳米金催化共振瑞利散射光谱法测定血红素[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 191-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[7] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[8] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[9] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[10] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发