|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 160-167.doi: 10.16088/j.issn.1001-6600.2022020703
卢家宽*, 王宇, 张博儒, 庞琳娜
LU Jiakuan*, WANG Yu, ZHANG Boru, PANG Linna
摘要: 设G是有限群,χ∈Irr(G),称cod(χ)=|G∶ker χ|χ(1)为不可约特征标χ的余次数。该算术量最近10多年被越来越多的学者关注,从多方面开展研究,取得不少成果。本文从余次数的算术条件对有限群结构的影响、余次数与其他算术量之间的联系等方面综述该领域的相关研究成果,同时,列举一些尚未解决的问题,供读者参考。
中图分类号:
[1]ISAACS I M. Character theory of finite groups[M]. Providence,RI: AMS Chelsea Publishing, 2006. [2]BERKOVICH Y G, ZHMUD E M. Characters of finite groups. Part 1.[M]. Providence: American Mathematical Society, 1998. [3]BERKOVICH Y G, ZHMUD E M. Characters of finite groups. Part 2.[M]. Providence: American Mathematical Society, 1999. [4]ISAACS I M. Characters of solvable groups[M]. Providence: American Mathematical Society, 2018. [5]QIAN G H, WANG Y M, WEI H Q. Co-degrees of irreducible characters in finite groups[J]. Journal of Algebra, 2007, 312(2): 946-955. [6]CHILLAG D, HERZOG M. On character degrees quotients[J]. Archiv der Mathematik, 1990, 55(1): 25-29. [7]CHILLAG D, MANN A, MANZ O. The co-degrees of irreducible characters[J]. Israel Journal of Mathematics,1991, 73(2): 207-223. [8]任永才. 关于有限群的特征标次数的商[J]. 数学学报, 1995, 38(2): 164-170. [9]钱国华. 特征标的算术条件与有限群结构[D]. 武汉:武汉大学, 2002. [10]钱国华. 有限群的特征标与共轭类[D]. 广州:中山大学, 2007. [11]钱国华. 有限群特征标次数商的几点注记[J]. 数学杂志, 2002, 22(2): 217-220. [12]钱国华. 特征标次数的商与有限群结构[J]. 数学年刊A辑, 2005,26(3): 307-312. [13]GAGOLA S M, Jr,LEWIS M L. A character theoretic condition characterizing nilpotent groups[J]. Communications in Algebra, 1999, 27(3): 1053-1056. [14]QIAN G H. A character theoretic criterion for a p-closed group[J]. Israel Journal of Mathematics, 2012, 190(1): 401-412. [15]LIANG D F, QIAN G H, SHI W J. Finite groups whose all irreducible character degrees are Hall-numbers[J]. Journal of Algebra, 2007, 307(2): 695-703. [16]LIANG D F, QIAN G H. Finite groups with coprime character degrees and codegrees[J]. Journal of Group Theory,2016, 19(5): 763-776. [17]BERKOVICH Y. Degrees, kernels and quasikernels of monolithic characters[J]. Proceedings of the American Mathematical Society,2000, 128(11): 3211-3220. [18]YANG D F, GAO C, LV H. Finite groups with special codegrees[J]. Archiv der Mathematik, 2020, 115(2): 121-130. [19]GAO T L, LIU Y. On codegrees and solvable groups[J/OL]. Bulletin of the Iranian Mathematical Society:1-7[2021-06-07]. https://doi.org/10.1007/s41980-021-00587-7. [20]THOMPSON J G. Normal p-complements and irreducible characters[J]. Journal of Algebra, 1970, 14(2): 129-134. [21]MICHLER G O. Brauer’s conjectures and the classification of finite simple groups[C]. Representation Theory II Groups and Orders. Berlin: Springer, Heidelberg, 1986:129-142. [22]CHEN X Y, YANG Y. Normal p-complements and monomial characters[J]. Monatshefte für Mathematik, 2020, 193(4): 807-810. [23]CHEN X Y, YANG Y. Notes on normal p-complements and monomial characters[J/OL]. Quaestiones Mathematicae: 1-4[2021-10-27]. https://doi.org/10.2989/16073606.2021.1977409. [24]QIAN G H, YANG Y. Permutation characters in finite solvable groups[J]. Communications in Algebra, 2018, 46(1) : 167-175. [25]LU J K, WU K X, MENG W. p-characters and the structure of finite solvable groups[J]. Journal of Group Theory, 2021, 24(2): 285-291. [26]BAHRAMIAN R, AHANJIDEH N. p-divisibility of co-degrees of irreducible characters[J]. Bulletin of the Australian Mathematical Society, 2021, 103(1): 78-82. [27]LEWIS M L, NAVARRO G, TIEP P H, et al. p-parts of character degrees[J]. Bulletin of the London Mathematical Society, 2015, 92(2): 483-497. [28]LEWIS M L, NAVARRO G, WOLF T R. p-parts of character degrees and the index of the fitting subgroup[J]. Journal of Algebra, 2014, 411: 182-190. [29]QIAN G H. A note on p-parts of character degrees[J]. Bulletin of the London Mathematical Society, 2018, 50(4): 663-666. [30]BAHRAMIAN R, AHANJIDEH N. p-parts of co-degrees of irreducible characters[J]. Comptes Rendus. Mathématique, 2021, 359(1): 79-83. [31]QIAN G H, ZHOU Y Y. On p-parts of character codegrees[J]. Journal of Group Theory, 2021, 24(5): 1005-1018. [32]NORITZSCH T. Groups having three complex irreducible character degrees[J]. Journal of Algebra, 1995, 175(3): 767-798. [33]MALLEG, MORETÓ A. Nonsolvable groups with few character degrees[J]. Journal of Algebra, 2005, 294(1): 117-126. [34]DU N, LEWIS M L. Codegrees and nilpotence class of p-groups[J]. Journal of Group Theory, 2016, 19(4): 561-567. [35]ALIZADEH F, BEHRAVESH H, GHAFFARZADEH M, et al. Groups with few codegrees of irreducible characters[J]. Communications in Algebra, 2019, 47(3): 1147-1152. [36]CROOMES, LEWIS M L. p-groups with exactly four codegrees[J]. Journal of Group Theory, 2020, 23(6): 1111-1122. [37]CROOME S, LEWIS M L. Character codegrees of maximal class p-groups[J]. Canadian Mathematical Bulletin, 2020, 63(2): 328-334. [38]MORETÓ A. Character degrees, character codegrees and nilpotence class of p-groups[J]. Communications in Algebra, 2022, 50(2): 803-808. [39]LIU Y, YANG Y. Nonsolvable groups with four character codegrees[J]. Journal of Algebra and Its Applications, 2021, 20(11): 2150196. [40]LIU Y, YANG Y. Nonsolvable groups with five character codegrees[J]. Communications in Algebra, 2021, 49(3): 1274-1279. [41]BERKOVICH Y, CHILLAG D, HERZOG M. Finite groups in which the degrees of the nonlinear irreducible characters are distinct[J]. Proceedings of the American Mathematical Society, 1992, 115(4): 955-959. [42]EBRAHIMI M. Groups in which the co degrees of the irreducible characters are distinct[J]. Communications in Algebra, 2021, 49(12): 5229-5232. [43]BERKOVICH Y. Finite solvable groups in which only two nonlinear irreducible characters have equal degrees[J]. Journal of Algebra, 1996, 184(2): 584-603. [44]BERKOVICH Y, KAZARIN L. Finite nonsolvable groups in which only two nonlinear irreducible characters have equal degrees[J]. Journal of Algebra, 1996, 184(2): 538-560. [45]XIONG H. Finite groups whose character graphs associated with codegrees have no triangles[J]. Algebra Colloquium, 2016, 23(1): 15-22. [46]SAYANJALI Z, AKHLAGHI Z, KHOSRAVI B. On the codegrees of finite groups[J]. Communications in Algebra, 2020, 48(3): 1327-1332. [47]ALIZADEH F, GHASEMI M, GHAFFARZADEH M. Finite groups whose codegrees are almost prime[J]. Communications in Algebra, 2021, 49(2): 538-544. [48]AHANJIDEH N. The one-prime hypothesis on the co-degrees of irreducible characters[J]. Communications in Algebra, 2021, 49(9): 4016-4020. [49]QIAN G H. A note on element orders and character codegrees[J]. Archiv der Mathematik, 2011, 97(2): 99-103. [50]ISSAACS I M. Element orders and character codegress[J]. Archiv der Mathematik, 2011, 97(6): 499-501. [51]QIAN G H. Element orders and character codegrees[J]. Bulletin of the London Mathematical Society, 2021, 53(3): 820-824. [52]GRITTINI N. p-length and character degrees in p-solvable groups[J]. Journal of Algebra, 2020, 544: 454-462. [53]AHANJIDEH N. The fitting subgroup, p-length, derived length and character table[J]. Mathematische Nachrichten, 2021, 294(2): 214-223. [54]YANG Y, QIAN G H. The analog of Huppert’s conjecture on character codegrees[J]. Journal of Algebra, 2017, 447: 215-219. [55]MORETÓ A. Huppert’s conjecture for character codegrees[J]. Mathematische Nachrichten, 2021, 294(11): 2232-2236. [56]JIN P, WANG L, YANG Y. Some counterexamples to Moretó’s question[J]. Bulletin of the Australian Mathematical Society, 已录用. [57]BAHRI A, AKHLAGHI Z, KHOSRAVI B. An analogue of Huppert’s conjecture for character codegrees[J]. Bulletin of the Australian Mathematical Society, 2021, 104(2): 278-286. |
[1] | 吴湘华, 钟祥贵. NS*-置换子群对有限群结构的影响[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 42-47. |
[2] | 孙雨晴, 卢家宽. 自中心化子群对有限群结构的影响[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 48-55. |
[3] | 韦华全, 袁卫峰, 周宇珍, 李雪, 李敏. 有限群的广义c#-正规子群[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 54-58. |
[4] | 钟祥贵, 孙悦, 吴湘华. 几乎CAP*-子群与有限群的p-超可解性[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 74-78. |
[5] | 卢家宽,刘雪霞,覃雪清. 关于Frobenius群的注记[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 84-87. |
[6] | 钟祥贵,丁锐芳,凌思敏. 非次正规子群共轭类数对有限群结构的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 44-48. |
[7] | 卢家宽,邱燕燕. 子群弱s-可补性对有限群可解性的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 49-52. |
[8] | 史江涛, 张翠. 非平凡循环子群共轭类类数较小的有限非可解群[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 52-56. |
[9] | 庞琳娜, 邱燕燕, 卢家宽. p-幂零群的若干充分条件[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 64-66. |
[10] | 钟祥贵, 廖枢华, 李明华, 谭春归, 陈小祥. 极大超可解子群与有限群的超可解性[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 44-47. |
[11] | 史江涛, 张翠, 郭松涛. 关于Shlyk定理的一个注记[J]. 广西师范大学学报(自然科学版), 2012, 30(1): 22-24. |
[12] | 梁登峰, 于欣言, 秦乐洋. 特征标维数图是一种连通图的可解群的注记[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 21-25. |
[13] | 卢家宽, 孟伟. 有限群的π-拟正规子群[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 35-37. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |