广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 160-167.doi: 10.16088/j.issn.1001-6600.2022020703

• 综述 • 上一篇    下一篇

有限群不可约特征标的余次数

卢家宽*, 王宇, 张博儒, 庞琳娜   

  1. 广西师范大学 数学与统计学院, 广西 桂林 541006
  • 收稿日期:2022-02-07 修回日期:2022-03-22 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 卢家宽(1980—), 男(壮族), 广西贵港人, 广西师范大学教授, 博士。E-mail: jklu@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11861015, 12161010); 广西自然科学基金(2020GXNSFAA238045)

Codegrees of Irreducible Characters in Finite Groups

LU Jiakuan*, WANG Yu, ZHANG Boru, PANG Linna   

  1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-02-07 Revised:2022-03-22 Online:2022-09-25 Published:2022-10-18

摘要: 设G是有限群,χ∈Irr(G),称cod(χ)=|G∶ker χ|χ(1)为不可约特征标χ的余次数。该算术量最近10多年被越来越多的学者关注,从多方面开展研究,取得不少成果。本文从余次数的算术条件对有限群结构的影响、余次数与其他算术量之间的联系等方面综述该领域的相关研究成果,同时,列举一些尚未解决的问题,供读者参考。

关键词: 不可约特征标, 余次数, 可解群, p-长, Huppert猜想

Abstract: Let G be a finite group, and χ∈Irr(G). The number cod(χ)=|G∶ker χ|χ(1) is called the codegree of the character χ. This paper makes a review on the results concerning codegree of irreducible character in finite groups in particular, lists some problems which are still open.

Key words: irreducible character, codegree, solvable groups, p-length, Huppert’s conjecture

中图分类号: 

  • O152.1
[1]ISAACS I M. Character theory of finite groups[M]. Providence,RI: AMS Chelsea Publishing, 2006.
[2]BERKOVICH Y G, ZHMUD E M. Characters of finite groups. Part 1.[M]. Providence: American Mathematical Society, 1998.
[3]BERKOVICH Y G, ZHMUD E M. Characters of finite groups. Part 2.[M]. Providence: American Mathematical Society, 1999.
[4]ISAACS I M. Characters of solvable groups[M]. Providence: American Mathematical Society, 2018.
[5]QIAN G H, WANG Y M, WEI H Q. Co-degrees of irreducible characters in finite groups[J]. Journal of Algebra, 2007, 312(2): 946-955.
[6]CHILLAG D, HERZOG M. On character degrees quotients[J]. Archiv der Mathematik, 1990, 55(1): 25-29.
[7]CHILLAG D, MANN A, MANZ O. The co-degrees of irreducible characters[J]. Israel Journal of Mathematics,1991, 73(2): 207-223.
[8]任永才. 关于有限群的特征标次数的商[J]. 数学学报, 1995, 38(2): 164-170.
[9]钱国华. 特征标的算术条件与有限群结构[D]. 武汉:武汉大学, 2002.
[10]钱国华. 有限群的特征标与共轭类[D]. 广州:中山大学, 2007.
[11]钱国华. 有限群特征标次数商的几点注记[J]. 数学杂志, 2002, 22(2): 217-220.
[12]钱国华. 特征标次数的商与有限群结构[J]. 数学年刊A辑, 2005,26(3): 307-312.
[13]GAGOLA S M, Jr,LEWIS M L. A character theoretic condition characterizing nilpotent groups[J]. Communications in Algebra, 1999, 27(3): 1053-1056.
[14]QIAN G H. A character theoretic criterion for a p-closed group[J]. Israel Journal of Mathematics, 2012, 190(1): 401-412.
[15]LIANG D F, QIAN G H, SHI W J. Finite groups whose all irreducible character degrees are Hall-numbers[J]. Journal of Algebra, 2007, 307(2): 695-703.
[16]LIANG D F, QIAN G H. Finite groups with coprime character degrees and codegrees[J]. Journal of Group Theory,2016, 19(5): 763-776.
[17]BERKOVICH Y. Degrees, kernels and quasikernels of monolithic characters[J]. Proceedings of the American Mathematical Society,2000, 128(11): 3211-3220.
[18]YANG D F, GAO C, LV H. Finite groups with special codegrees[J]. Archiv der Mathematik, 2020, 115(2): 121-130.
[19]GAO T L, LIU Y. On codegrees and solvable groups[J/OL]. Bulletin of the Iranian Mathematical Society:1-7[2021-06-07]. https://doi.org/10.1007/s41980-021-00587-7.
[20]THOMPSON J G. Normal p-complements and irreducible characters[J]. Journal of Algebra, 1970, 14(2): 129-134.
[21]MICHLER G O. Brauer’s conjectures and the classification of finite simple groups[C]. Representation Theory II Groups and Orders. Berlin: Springer, Heidelberg, 1986:129-142.
[22]CHEN X Y, YANG Y. Normal p-complements and monomial characters[J]. Monatshefte für Mathematik, 2020, 193(4): 807-810.
[23]CHEN X Y, YANG Y. Notes on normal p-complements and monomial characters[J/OL]. Quaestiones Mathematicae: 1-4[2021-10-27]. https://doi.org/10.2989/16073606.2021.1977409.
[24]QIAN G H, YANG Y. Permutation characters in finite solvable groups[J]. Communications in Algebra, 2018, 46(1) : 167-175.
[25]LU J K, WU K X, MENG W. p-characters and the structure of finite solvable groups[J]. Journal of Group Theory, 2021, 24(2): 285-291.
[26]BAHRAMIAN R, AHANJIDEH N. p-divisibility of co-degrees of irreducible characters[J]. Bulletin of the Australian Mathematical Society, 2021, 103(1): 78-82.
[27]LEWIS M L, NAVARRO G, TIEP P H, et al. p-parts of character degrees[J]. Bulletin of the London Mathematical Society, 2015, 92(2): 483-497.
[28]LEWIS M L, NAVARRO G, WOLF T R. p-parts of character degrees and the index of the fitting subgroup[J]. Journal of Algebra, 2014, 411: 182-190.
[29]QIAN G H. A note on p-parts of character degrees[J]. Bulletin of the London Mathematical Society, 2018, 50(4): 663-666.
[30]BAHRAMIAN R, AHANJIDEH N. p-parts of co-degrees of irreducible characters[J]. Comptes Rendus. Mathématique, 2021, 359(1): 79-83.
[31]QIAN G H, ZHOU Y Y. On p-parts of character codegrees[J]. Journal of Group Theory, 2021, 24(5): 1005-1018.
[32]NORITZSCH T. Groups having three complex irreducible character degrees[J]. Journal of Algebra, 1995, 175(3): 767-798.
[33]MALLEG, MORETÓ A. Nonsolvable groups with few character degrees[J]. Journal of Algebra, 2005, 294(1): 117-126.
[34]DU N, LEWIS M L. Codegrees and nilpotence class of p-groups[J]. Journal of Group Theory, 2016, 19(4): 561-567.
[35]ALIZADEH F, BEHRAVESH H, GHAFFARZADEH M, et al. Groups with few codegrees of irreducible characters[J]. Communications in Algebra, 2019, 47(3): 1147-1152.
[36]CROOMES, LEWIS M L. p-groups with exactly four codegrees[J]. Journal of Group Theory, 2020, 23(6): 1111-1122.
[37]CROOME S, LEWIS M L. Character codegrees of maximal class p-groups[J]. Canadian Mathematical Bulletin, 2020, 63(2): 328-334.
[38]MORETÓ A. Character degrees, character codegrees and nilpotence class of p-groups[J]. Communications in Algebra, 2022, 50(2): 803-808.
[39]LIU Y, YANG Y. Nonsolvable groups with four character codegrees[J]. Journal of Algebra and Its Applications, 2021, 20(11): 2150196.
[40]LIU Y, YANG Y. Nonsolvable groups with five character codegrees[J]. Communications in Algebra, 2021, 49(3): 1274-1279.
[41]BERKOVICH Y, CHILLAG D, HERZOG M. Finite groups in which the degrees of the nonlinear irreducible characters are distinct[J]. Proceedings of the American Mathematical Society, 1992, 115(4): 955-959.
[42]EBRAHIMI M. Groups in which the co degrees of the irreducible characters are distinct[J]. Communications in Algebra, 2021, 49(12): 5229-5232.
[43]BERKOVICH Y. Finite solvable groups in which only two nonlinear irreducible characters have equal degrees[J]. Journal of Algebra, 1996, 184(2): 584-603.
[44]BERKOVICH Y, KAZARIN L. Finite nonsolvable groups in which only two nonlinear irreducible characters have equal degrees[J]. Journal of Algebra, 1996, 184(2): 538-560.
[45]XIONG H. Finite groups whose character graphs associated with codegrees have no triangles[J]. Algebra Colloquium, 2016, 23(1): 15-22.
[46]SAYANJALI Z, AKHLAGHI Z, KHOSRAVI B. On the codegrees of finite groups[J]. Communications in Algebra, 2020, 48(3): 1327-1332.
[47]ALIZADEH F, GHASEMI M, GHAFFARZADEH M. Finite groups whose codegrees are almost prime[J]. Communications in Algebra, 2021, 49(2): 538-544.
[48]AHANJIDEH N. The one-prime hypothesis on the co-degrees of irreducible characters[J]. Communications in Algebra, 2021, 49(9): 4016-4020.
[49]QIAN G H. A note on element orders and character codegrees[J]. Archiv der Mathematik, 2011, 97(2): 99-103.
[50]ISSAACS I M. Element orders and character codegress[J]. Archiv der Mathematik, 2011, 97(6): 499-501.
[51]QIAN G H. Element orders and character codegrees[J]. Bulletin of the London Mathematical Society, 2021, 53(3): 820-824.
[52]GRITTINI N. p-length and character degrees in p-solvable groups[J]. Journal of Algebra, 2020, 544: 454-462.
[53]AHANJIDEH N. The fitting subgroup, p-length, derived length and character table[J]. Mathematische Nachrichten, 2021, 294(2): 214-223.
[54]YANG Y, QIAN G H. The analog of Huppert’s conjecture on character codegrees[J]. Journal of Algebra, 2017, 447: 215-219.
[55]MORETÓ A. Huppert’s conjecture for character codegrees[J]. Mathematische Nachrichten, 2021, 294(11): 2232-2236.
[56]JIN P, WANG L, YANG Y. Some counterexamples to Moretó’s question[J]. Bulletin of the Australian Mathematical Society, 已录用.
[57]BAHRI A, AKHLAGHI Z, KHOSRAVI B. An analogue of Huppert’s conjecture for character codegrees[J]. Bulletin of the Australian Mathematical Society, 2021, 104(2): 278-286.
[1] 吴湘华, 钟祥贵. NS*-置换子群对有限群结构的影响[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 42-47.
[2] 孙雨晴, 卢家宽. 自中心化子群对有限群结构的影响[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 48-55.
[3] 韦华全, 袁卫峰, 周宇珍, 李雪, 李敏. 有限群的广义c#-正规子群[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 54-58.
[4] 钟祥贵, 孙悦, 吴湘华. 几乎CAP*-子群与有限群的p-超可解性[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 74-78.
[5] 卢家宽,刘雪霞,覃雪清. 关于Frobenius群的注记[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 84-87.
[6] 钟祥贵,丁锐芳,凌思敏. 非次正规子群共轭类数对有限群结构的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 44-48.
[7] 卢家宽,邱燕燕. 子群弱s-可补性对有限群可解性的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 49-52.
[8] 史江涛, 张翠. 非平凡循环子群共轭类类数较小的有限非可解群[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 52-56.
[9] 庞琳娜, 邱燕燕, 卢家宽. p-幂零群的若干充分条件[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 64-66.
[10] 钟祥贵, 廖枢华, 李明华, 谭春归, 陈小祥. 极大超可解子群与有限群的超可解性[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 44-47.
[11] 史江涛, 张翠, 郭松涛. 关于Shlyk定理的一个注记[J]. 广西师范大学学报(自然科学版), 2012, 30(1): 22-24.
[12] 梁登峰, 于欣言, 秦乐洋. 特征标维数图是一种连通图的可解群的注记[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 21-25.
[13] 卢家宽, 孟伟. 有限群的π-拟正规子群[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 35-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[7] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[8] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[9] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[10] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发