广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (3): 63-74.doi: 10.16088/j.issn.1001-6600.2017.03.008

• • 上一篇    下一篇

强混合样本下刻度指数分布族参数的经验贝叶斯估计和检验

雷庆祝1, 秦永松1*, 罗敏2   

  1. 1. 广西师范大学数学与统计学院,广西桂林541004;
    2. 桂林市职工大学,广西桂林541002
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 秦永松(1964—),男,湖北鄂州人,广西师范大学教授。E-mail:ysqin@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11361011,11671102);广西自然科学基金(2016GXNSFAA3800163)

Empirical Bayes Estimation and Test for Scale ExponentialFamilies under Strong Mixing Samples

LEI Qingzhu1,QIN Yongsong1*,LUO Min2   

  1. 1. College of Mathematic and Statistics,Guangxi Normal University, Guilin Guangxi 541004,China;
    2. Guilin Staff and Workers University, Guilin Guangxi 541002,China
  • Online:2017-07-25 Published:2018-07-25

摘要: 本文研究强混合样本下刻度指数分布族参数的经验贝叶斯(EB)估计和检验问题,提出了2种EB估计和2种EB检验方法,在较一般的正则条件下,给出了在强混合样本下所提出的EB估计和EB检验的收敛速度,并模拟研究了EB方法的优劣性。

关键词: α-混合, 刻度指数分布族, EB估计, EB检验, 收敛速度

Abstract: In this paper, the empirical Bayes (EB) estimation and (EB) test in scale exponential families are studied under strong mixing samples. Two EB estimators and two EB tests are proposed. Under mild regularity conditions, the convergence rates of the proposed EB estimators and EB tests are given under strong mixing samples. Simulation results are also given to show the performance of the proposed EB estimators and tests.

Key words: α-mixing, scale exponential family, EB estimator, EB test, convergence rate

中图分类号: 

  • O212.1
[1] ROBBINS H. An empirical Bayes approach to statistics[C]//Proc Third Berkeley Syrup on Math Statist Prob,Berkeley:Univ California Press,1956:157-163.
[2] Jr JOHNS M V. Non-parametric empirical Bayes procedures[J]. Ann Math Statist,1957,28(3):649-669.DOI:10.1214/aoms/1177706877.
[3] Jr JOHNS M V,Van RYZIN J. Convergence rates for empirical Bayes two-action problems I:discrete case[J]. Ann Math Statist,1971,42(5):1521-1539.DOI:10.1214/aoms/1177693151.
[4] Jr JOHNS M V,Van RYZIN J. Convergence rates for empirical Bayes two-action problems II:continuous case[J]. Ann Math Statist,1972,43(3):934-947.DOI:10.1214/aoms/1177692557.
[5] LIN P E. Rates of convergence in empirical Bayes estimation problems:continuous case[J]. Ann Statist,1975,3(1):155-164.DOI:10.1214/aos/1176343005.
[6] SINGH R S. Empirical Bayes estimation in Lebesgue-exponential families with rates near the best possible rate[J]. Ann Statist,1979,7(4):890-902.DOI:10.1214/aos/1176344738.
[7] SINGH R S, WEI Laisheng. Empirical Bayes with rates and best rates of convergence in u(x)c(θ)e-x/θ-family:estimation case[J]. Ann Inst Statist Math,1992,44(3):435-449.DOI:10.1007/BF00050697.
[8] 韦来生. 刻度指数族参数的经验Bayes检验问题:NA 样本情形[J]. 应用数学学报,2000,23(3):403-412.
[9] 郭鹏江,王惠亚,张涛. PA 样本下刻度指数族参数的EB检验[J]. 西北大学学报(自然科学版),2009,39(1):1-5.
[10] 陈玲,韦来生. 连续型单参数指数族参数的经验Bayes 估计问题:NA 样本情形[J]. 数学研究,2006,39(1):44-50.
[11] LEI Qingzhu, QIN Yongsong. Empirical Bayes test problem in continuous one-parameter exponential families under dependent samples[J]. Sankhya A:The Indian Journal of Statistics,2015,77(2):364-379.DOI:10.1007/s13171-015-0075-6.
[12] 雷庆祝,秦永松. 强混合样本下连续型单参数指数分布族的经验贝叶斯估计[J]. 应用数学,2016,29(1):143-151.DOI:10.13642/j.cnki.42-1184/o1.2015.01.018.
[13] ROSENBLATT M. A central limit theorem and a strong mixing condition[J]. Proc Natl Acad Sci, 1956,42(1):43-47.
[14] DOUKHAN P. Mixing:properties and examples[M]. New York:Springer-Verlag,1994.
[15] CHANDA K C. Strong mixing properties of linear stochastic processes[J]. J Appl Probab,1974,11(2):401-408.DOI:10.2307/3212764.
[16] GORODETSKII V V. On the strong mixing properties for linear sequences[J]. Theory Probab Appl,1978,22(2):411-413.DOI:10.1137/1122049.
[17] WITHERS C S. Conditions for linear processes to be strong-mixing[J]. Z Wahrsch Verw Grebiete,1981,57(4):477-480.DOI:10.1007/BF01025869.
[18] PHAM T D, TRAN L T. Some mixing properties of time series models[J]. Stochastic Process Appl,1985,19(2):297-303.DOI:10.1016/0304-4149(85)90031-6.
[19] GENON-CATALOT V, JEANTHEAU T, LAREDO C. Stochastic volatility models as hidden Markov models and statistical applications[J]. Bernoulli,2000,6(6):1051-1079.DOI:10.2307/3318471.
[20] RAO B L S P. Nonparametric functional estimation[M]. Orlando, FL:Academic Press,1983.
[21] BRADLEY R C. Basic properties of strong mixing conditions. a survey and some open questions[J]. Probability Surveys,2005,2:107-144.DOI:10.1214/154957805100000104.
[22] ROBERTS G O, ROSENTHAL J S. Harris recurrence of metropolis-within-gibbs and trans-dimensional Markov chains[J]. The Annals of Applied Probability,2006,16(4):2123-2139.DOI:10.1214/105051606000000510.
[23] DEO C M. A note on empirical processes of strong-mixing sequences[J]. Ann Probab,1973,1(5):870-875.DOI:10.1214/aop/1176996855.
[24] 赵林城. 一类离散分布参数的经验Bayes 估计的收敛速度[J]. 数学研究与评论,1981(1):59-69.
[1] 林松, 尹长明. 两阶段Logit模型的惩罚广义估计方程估计的渐近性质[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 126-130.
[2] 何琳,杨善朝. α-混合随机域边缘频率插值的渐近方差性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 88-94.
[3] 张军舰,赖廷煜,杨晓伟. VaR和ES的贝叶斯经验似然估计[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 38-45.
[4] 张新成, 张军舰, 詹欢. 基于垂直密度表示的经验欧氏拟合优度检验[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 60-65.
[5] 杜雪松, 宾石玉, 林勇, 唐章生, 张永德, 曾兰, 杨慧赞, 陈忠. 基于ULCIZ和SIT的罗非鱼耐寒性能测定模型[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 134-139.
[6] 张军舰, 詹欢, 晏振. 基于经验欧氏似然的拟合优度检验[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 30-35.
[7] 张军舰, 杨秀芹. 最小加权KS估计[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发