|
广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (3): 75-82.doi: 10.16088/j.issn.1001-6600.2017.03.009
闫荣君, 韦煜明*, 冯春华
YAN Rongjun, WEI Yuming*, FENG Chunhua
摘要: 本文研究一类带p-Laplacian算子的分数阶时滞微分方程边值问题正解的存在性,应用Avery-Peterson不动点定理,当非线性项f满足一定增长条件时,得到上述边值问题至少存在3个正解的充分条件,得到一些新的结果,推广了已有的工作。
中图分类号:
[1] LI Nan,WANG Changyou. New existence results of positive solution for a class of nonlinear fractional differential equations[J]. Acta Mathematica Scientia,2013,33(3):847-854.DOI:10.1016/S0252-9602(13)60044-2. [2] BAI Zhanbing QIU Tingting. Existence of positive solution for singular fractional differential equation[J]. Applied Mathematics and Computation,2009,215(7):2761-2767.DOI:10.1016/j.amc.2009.09.017. [3] BAI Zhanbing,L Hanshen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications,2005,311(2):495-505.DOI:10.1016/j.jmaa.2005.02.052. [4] ARARA A,BENCHOHRA M,HAMIDI N. Fractional order differential equations on an unbounded domain[J]. Nonlinear Analysis: Theory, Methods and Applications, 2010, 72(2):580-586.DOI:10.1016/j.na.2009.06.106. [5] SU Xinwei,ZHANG Shuqing. Unbounded solutions to a boundary value problem of fractional order on the half-line[J]. Computers and Mathematics with Applications,2011,61(4):1079-1087.DOI:10.1016/j.camwa.2010.12.058. [6] SU Xinwei. Solutions to boundary value problem of fractional order on unbounded domains in Banach space[J]. Nonlinear Analysis: Theory, Method and Applications, 2011, 74(8):2844-2852.DOI:10.1016/j.na.2011.01.006. [7] WEI Yuming, WONG P J Y, GE Weigao. The existence of multiple positive solutions to boundary value problems of nonlinear delay differential equations with countably many singularities on infinite interval[J]. Journal of Computers and Applied Mathematics,2010,233(9):2189-2199. DOI:10.1016/j.cam.2009.10.005. [8] 吴炳华.一类分数阶微分方程正解的存在性[J].兰州理工大学学报,2011,37(2):146-149.DOI:10.13295/j.cnki.jlut.2011.02.005. [9] 杨军,李亚.一类无穷域上高分数阶微分方程正解的存在性[J].兰州理工大学学报,2014,40(4):155-158.DOI:10.13295/j.cnki.jlut.2014.04.005. [10] 郑祖麻.分数微分方程的发展和应用[J].徐州师范大学学报(自然科学版),2008,26(2):1-10.DOI:10.3969/j.issn.1007-6573.2008.02.001. [11] ZHAO Xiangkui,GE Weigao. Unbounded solutions for a fractional boundary value problems on the infinite interval[J]. Acta Applicandae Mathematicae,2010,109(2):495-505.DOI:10.1007/s10440-008-9329-9. [12] CHEN Taiyong,LIU Wenbin,HU Zhigang. A boundary value problem for fractional differential equation with p-Laplacian operator at resonance[J]. Nonlinear Analysis: Theory, Methods and Applications,2012,75(6):3210-3217.DOI:10.1016/j.na.2011.12.020. [13] HAN Zhenlai,LI Yanan,SUI Meizhen. Existence results for boundary value problems of fractional functional differential equations with delay[J]. Journal of Applied Mathematics and Computing,2016,51(1):367-381.DOI:10.1007/s12190-015-0910-x. [14] 白占冰.分数阶微分方程边值问题理论及其应用[M]. 北京:科学出版社,2012:44-45. [15] 葛渭高.非线性常微分方程边值问题[M].北京:科学出版社,2007:63-64. |
[1] | 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41-49. |
[2] | 庞 杨,韦煜明,冯春华. 一类分数阶微分方程两点边值问题正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 68-75. |
[3] | 郝平平, 冯春华. 一类具有非线性物种密度制约死亡率的Nicholson模型解的性态[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 42-47. |
[4] | 韦煜明, 王勇, 唐艳秋, 范江华. 具p-Laplacian算子时滞微分方程边值问题解的存在唯一性[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 48-53. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |