广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (3): 75-82.doi: 10.16088/j.issn.1001-6600.2017.03.009

• • 上一篇    下一篇

p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性

闫荣君, 韦煜明*, 冯春华   

  1. 广西师范大学数学与统计学院,广西桂林541004
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 韦煜明(1974—),男,广西桂平人,广西师范大学教授,博士。E-mail :ymwei@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11361010);广西自然科学基金(2014GXNSFAA118002);广西高等学校高水平创新团队及卓越学者计划;广西高等数学与统计模型重点实验室开放基金

Existence of Three Positive Solutions for Fractional Differential Equation ofBoundary Value Problem with p-Laplacian Operator and Delay

YAN Rongjun, WEI Yuming*, FENG Chunhua   

  1. College of Mathematics and Statistics, Guangxi Normal University,Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

摘要: 本文研究一类带p-Laplacian算子的分数阶时滞微分方程边值问题正解的存在性,应用Avery-Peterson不动点定理,当非线性项f满足一定增长条件时,得到上述边值问题至少存在3个正解的充分条件,得到一些新的结果,推广了已有的工作。

关键词: 分数阶微分方程, 时滞微分方程, 边值问题, p-Laplacian算子, Avery-Peterson不动点定理

Abstract: In this paper,the existence of positive solutions for fractional differential equation boundary value problems with p-Laplacian operator and delay are considered. By using Avery-Perterson fixed point theorem,under certain growth conditions, the existence of at least three positive solutions for the above boundary value problem are studied. Not only are some new results obtained,but also some known results are generalized and improved.

Key words: fractional differential equation, delay, boundary value problem, p-Laplacian operator, Avery-Peterson fixed point theorem

中图分类号: 

  • O175.8
[1] LI Nan,WANG Changyou. New existence results of positive solution for a class of nonlinear fractional differential equations[J]. Acta Mathematica Scientia,2013,33(3):847-854.DOI:10.1016/S0252-9602(13)60044-2.
[2] BAI Zhanbing QIU Tingting. Existence of positive solution for singular fractional differential equation[J]. Applied Mathematics and Computation,2009,215(7):2761-2767.DOI:10.1016/j.amc.2009.09.017.
[3] BAI Zhanbing,L Hanshen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications,2005,311(2):495-505.DOI:10.1016/j.jmaa.2005.02.052.
[4] ARARA A,BENCHOHRA M,HAMIDI N. Fractional order differential equations on an unbounded domain[J]. Nonlinear Analysis: Theory, Methods and Applications, 2010, 72(2):580-586.DOI:10.1016/j.na.2009.06.106.
[5] SU Xinwei,ZHANG Shuqing. Unbounded solutions to a boundary value problem of fractional order on the half-line[J]. Computers and Mathematics with Applications,2011,61(4):1079-1087.DOI:10.1016/j.camwa.2010.12.058.
[6] SU Xinwei. Solutions to boundary value problem of fractional order on unbounded domains in Banach space[J]. Nonlinear Analysis: Theory, Method and Applications, 2011, 74(8):2844-2852.DOI:10.1016/j.na.2011.01.006.
[7] WEI Yuming, WONG P J Y, GE Weigao. The existence of multiple positive solutions to boundary value problems of nonlinear delay differential equations with countably many singularities on infinite interval[J]. Journal of Computers and Applied Mathematics,2010,233(9):2189-2199. DOI:10.1016/j.cam.2009.10.005.
[8] 吴炳华.一类分数阶微分方程正解的存在性[J].兰州理工大学学报,2011,37(2):146-149.DOI:10.13295/j.cnki.jlut.2011.02.005.
[9] 杨军,李亚.一类无穷域上高分数阶微分方程正解的存在性[J].兰州理工大学学报,2014,40(4):155-158.DOI:10.13295/j.cnki.jlut.2014.04.005.
[10] 郑祖麻.分数微分方程的发展和应用[J].徐州师范大学学报(自然科学版),2008,26(2):1-10.DOI:10.3969/j.issn.1007-6573.2008.02.001.
[11] ZHAO Xiangkui,GE Weigao. Unbounded solutions for a fractional boundary value problems on the infinite interval[J]. Acta Applicandae Mathematicae,2010,109(2):495-505.DOI:10.1007/s10440-008-9329-9.
[12] CHEN Taiyong,LIU Wenbin,HU Zhigang. A boundary value problem for fractional differential equation with p-Laplacian operator at resonance[J]. Nonlinear Analysis: Theory, Methods and Applications,2012,75(6):3210-3217.DOI:10.1016/j.na.2011.12.020.
[13] HAN Zhenlai,LI Yanan,SUI Meizhen. Existence results for boundary value problems of fractional functional differential equations with delay[J]. Journal of Applied Mathematics and Computing,2016,51(1):367-381.DOI:10.1007/s12190-015-0910-x.
[14] 白占冰.分数阶微分方程边值问题理论及其应用[M]. 北京:科学出版社,2012:44-45.
[15] 葛渭高.非线性常微分方程边值问题[M].北京:科学出版社,2007:63-64.
[1] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41-49.
[2] 庞 杨,韦煜明,冯春华. 一类分数阶微分方程两点边值问题正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 68-75.
[3] 郝平平, 冯春华. 一类具有非线性物种密度制约死亡率的Nicholson模型解的性态[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 42-47.
[4] 韦煜明, 王勇, 唐艳秋, 范江华. p-Laplacian算子时滞微分方程边值问题解的存在唯一性[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发