广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (3): 1-13.doi: 10.16088/j.issn.1001-6600.2017.03.001

• •    下一篇

一种基于局部HOG特征的运动车辆检测方法

李子彦1, 刘伟铭1, 2*   

  1. 1.华南理工大学土木与交通学院,广东广州510641;
    2.华南理工大学智能交通系统与物流技术研究所,广东广州510641
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 刘伟铭(1963—),男,湖南宁乡人,华南理工大学教授,博士。E-mail:mingweiliu@126.com
  • 基金资助:
    “十三五”国家重点研发计划先进轨道交通重点专项(2016YFB1200402-07)

New Method of Moving Vehicle Detection Based on Partial HOG Feature

LI Ziyan1,LIU Weiming 1,2*   

  1. 1.School of Civil and Transportation Engineering, South China University of Technology, Guangzhou Guangdong 510641, China;
    2. Institute of Intelligent Transportation Systems and Logistics Technology, South China University of Technology,Guangzhou Guangdong 510641, China
  • Online:2017-07-25 Published:2018-07-25

摘要: 在平均车头时距较小的交通拥挤情景中,针对传统的基于截取完整车辆作为待检区域的方向梯度直方图(HOG)特征匹配方法较难取得准确的待检区域及其漏检率与误检率较高等问题,本文提出一种基于局部HOG特征提取及识别方法。首先采用中值滤波的方式对图像进行预处理,然后在图像中选取特定区域并设置一条虚拟检测线,将此检测线作为感兴趣区域(ROI)来提取灰度图像的局部HOG特征向量,最后采用支持向量机(SVM)对局部HOG特征向量进行模型训练,以及对车辆处于检测线和离开检测线这2种状态进行分类和计数。针对支持向量机的输出结果存在噪声点的问题,使用检测队列和二次确认模块相结合的方法进行过滤,且在选取训练样本时利用车尾阴影来提高检测的灵敏度。该方法与传统的基于车辆整体外观的HOG特征检测方法及其他车辆计数方法相比,具有检测率高、实时性强、灵敏度高的特点,尤其在平均车头时距较小的交通拥挤状况中,检测效果明显优于其他方法。

关键词: 虚拟检测线, 局部方向梯度直方图特征, 支持向量机, 车辆检测

Abstract: When the average gap between fronts of vehicles is relatively narrow during a heavy trafic, the traditional histogram matching method based on directional gradient histogram (HOG), which is based on intercepting the whole vehicle, is difficult to obtain the accurate detection area and this method has higher omission rate and false detection rate. For improving the accuracy, a new method is proposed based on the characteristic value extracting from the partial HOG. The principles of this method are as follows: at first, mid-value filtering is applied for preprocessing graph sample;then a virtual detection line is drawn in the selected region of the sample graph and acts as the sources of the region of interest(ROI) that is used for extracting the partial HOG feature vectors of the gray level graphs; at last, support vector machines (SVM) are used to train the local HOG feature vectors, and the two states of vehicle within detection line and out of detection line are classified and counted.To overcome the noise problem existed in the output of SVM,the proposed method employs a strategy combining generating a detection alignments and dual confirmation module. To improve the delicacy, the variable that describes the shadow of the vehicle is added into our SVM model. Compared to the traditional method adopting HOG, based on the whole outline of the vehicles, the method proposed in this article has the advantages of high detection rate, good real-time performance and high sensitivity. Especially when the average gap between fronts of vehicles is relatively narrow during a heavy trafic our method is more efficient.

Key words: virtual detection line, local orientation gradient histogram feature, support vector machine, vehicle detection

中图分类号: 

  • TP751
[1] 梁俊斌,徐建闽. 基于感应线圈的骑线车辆检测方法[J].华南理工大学学报(自然科学版),2007,35(7):20-24.DOI:10.3321/j.issn:1000-565x.2007.07.005.
[2] 张浩,薛伟,余稳,等.一种应用于毫米波车流量检测雷达的背景功率谱识别方法[J].红外与毫米波学报,2008,27(6):437-441.DOI:10.3321/j.issn:1001-9014.2008.06.010.
[3] XIONG Changzhen, FAN Wuyi, LI Zhengxi. Traffic flow detection algorithm based on intensity curve of high-resolution image[C]// 2010 2nd International Conference on Computer Modeling and Simulation: Volume 3. Piscataway,NJ:IEEE Press,2010:159-162.DOI:10.1109/ICCMS.2010.405.
[4] MARIN D, AQUINO A, GEGUNDEZ-ARIAS M E, et al. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features[J].IEEE Transactions on Medical Imaging,2011, 30(1):146-158. DOI:10.1109/TMI.2010.2064333.
[5] HAN B, DAVIS L S. Density-based multifeature background subtraction with support vector machine[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(5):1017-1023.DOI:10.1109/TPAMI.2011.243.
[6] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2005:886-893.DOI:10.1109/CVPR.2005.177.
[7] CHENG Li,GONG Minglun,SCHUURMANS D,et al.Real-time discriminative background subtraction[J].IEEE Transactions on Image Processing,2011,20(5):1401-1414.DOI:10.1109/TIP.2010.2087764.
[8] BARNICH O,Van DROOGENBROECK M.ViBe: a universal background subtraction algorithm for video sequences[J].IEEE Transactions on Image Processing,2011,20(6):1709-1724.DOI:10.1109/TIP.2010.2101613.
[9] 刘操,郑宏,黎曦,等.基于多通道融合HOG特征的全天候运动车辆检测方法[J].武汉大学学报(信息科学版),2015,40(8):1048-1053.DOI:10.13203/j.whugis20130341.
[10] 蒋新华,高晟,廖律超,等.半监督SVM分类算法的交通视频车辆检测方法[J]. 智能系统学报,2015,10(5):690-698.DOI:10.11992/tis.201406044.
[11] 王讯峰.基于视觉的前方车辆检测算法的研究[D].广州:华南理工大学,2014.
[12] 张生瑞.交通流理论与方法[M].北京:中国铁道出版社,2010.
[13] LOY C C, GONG Shaogang, XIANG Tao. From semi-supervised to transfer counting of crowds[C]// 2013 IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Press,2013:2256-2263.DOI:10.1109/ICCV.2013.270.
[14] LEIBE B, CORNELIS N, CORNELIS K, et al.Dynamic 3D scene analysis from a moving vehicle[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press,2007:1-8.DOI:10.1109/CVPR.2007.383146.
[15] LIU Xu, WANG Zilei, FENG Jiashi, et al. Highway vehicle counting in compressed domain[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2016:3016-3024.DOI:10.1109/CVPR.2016.329.
[16] 边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.
[17] SCHULTER S, LEISTNER C, WOHLHART P,et al. Accurate object detection with joint classification-regression random forests[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2014:923-930.DOI:10.1109/CVPR.2014.123.
[18] 汪启伟.图像直方图特征及其应用研究[D].合肥:中国科学技术大学,2014.
[19] 周志华.机器学习[M].北京:清华大学出版社,2016.
[1] 朱勇建, 彭柯, 漆广文, 夏海英, 宋树祥. 基于机器视觉的太阳能网版缺陷检测[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 105-112.
[2] 吕凯晨, 闫宏飞, 陈翀. 基于沪深300成分股的量化投资策略研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 1-12.
[3] 刘艳红, 罗晓曙, 陈锦, 郭磊. 宫颈细胞图像的特征提取与识别研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 61-66.
[4] 陈思溢, 罗强, 黄辉先. 基于群决策理论的协调控制子区划分方法[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 18-25.
[5] 左信, 黄海龙, 刘建伟. 非凸共轭梯度p范数正则化SVM分类算法[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 51-58.
[6] 王世明, 徐建闽, 李日涵. 城市快速路入口匝道控制算法的改进[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 1-6.
[7] 严晓明, 郑之. 基于混合仿生算法的SVM参数优化[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发