Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (3): 35-42.doi: 10.16088/j.issn.1001-6600.2024060201

• Physics and Electronic Engineering • Previous Articles     Next Articles

Study on Temperature Sensing Characteristics of Long Period Fiber Grating with Coating Layer

HUANG Chuanyang1,2, CHENG Can’er1,2, LI Songwei1,2, CHENG Hongdong1,2, ZHANG Qiunan1,2, ZHANG Zhao1,2, SHAO Laipeng1,2*, TANG Jian1,2, WANG Yongmei1,2*, GUO Kuikui3, LU Hanglin1,2, HU Junhui1,2   

  1. 1. College of Physical Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Nuclear Physics and Technology (Guangxi Normal University), Guilin Guangxi 541004, China;
    3. School of Telecommunication Engineering and Intelligent Engineering, Dongguan Institute of Technology,Dongguan Guangdong 523808, China
  • Received:2024-06-02 Revised:2024-07-22 Online:2025-05-05 Published:2025-05-14

Abstract: The influence of fiber coating on the temperature sensitivity of Long period fiber grating (LPFG) is theoretically analyzed. The transmission spectra of LPFG with and without a coating layer are simulated using numerical analysis, and the mode coupling process of LPFG for temperature sensing is analyzed. The results show that the larger the cladding mode order, the greater the effect of the coating layer on the effective refractive index of different cladding modes. Then it is inferred that the LPFG resonance peaks associated with different cladding modes have different temperature sensitivities. The coating layer protects the optical fiber and improves its mechanical strength. Still, more importantly, the coating layer can effectively enhance the temperature sensitivity of the transmission peaks coupled with higher-order cladding modes. At the same time, the results are useful for experimental studies of gratings prepared by retaining the coating layer and polymer-coated grating structures.

Key words: long-period fiber gratings, temperature characteristics, coating layers, fiber-optic sensing

CLC Number:  TN253; TP212
[1] 庄园,周次明,范典.光纤金属涂覆方法研究综述[J].激光与光电子学进展,2022,59(5):0500002. DOI: 10.3788/LOP202259.0500002.
[2]訾东东.基于FPGA的光纤涂覆层激光烧蚀关键技术研究[D].哈尔滨:哈尔滨工程大学,2014. DOI: 10.7666/d.D595208.
[3]URRUTIA A, GOICOECHEA J, RICCHIUTI A L, et al. Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating[J]. Sensors and Actuators B: Chemical, 2016, 227: 135-141. DOI: 10.1016/j.snb.2015.12.031.
[4]MARTINEZ A, KHRUSHCHEV I Y, BENNION I. Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser[J]. Optics Letters, 2006, 31(11): 1603-1605. DOI: 10.1364/OL.31.001603.
[5]陆君辉,施解龙.含涂覆层长周期光纤光栅温度特性研究[J].量子电子学报,2012,29(2):247-251. DOI: 10.3969/j.issn.1007-5461.2012.02.019.
[6]CHIANG K S, LIU Y Q, NG M N, et al. Analysis of etched long-period fibre grating and its response to external refractive index[J]. Electronics Letters, 2000, 36(11): 966-967. DOI: 10.1049/el:20000701.
[7]张振宇,王新伟,庄怀轩,等.光纤涂覆层对应力长周期光纤光栅传输谱特性影响的实验研究[J].南开大学学报(自然科学版),2006,39(5):26-29. DOI: 10.3969/j.issn.0465-7942.2006.05.007.
[8]米亭.涂覆层对地质用光纤光栅应力特性影响研究[J].科技创新与应用,2017(6):66.
[9]江柳清,胡义慧,江超,等.涂覆层对长周期光纤光栅温度传感特性的影响研究[J].激光杂志,2016,37(12):131-133. DOI: 10.14016/j.cnki.jgzz.2016.12.131.
[10]黄肖迪,王源,孙阳阳,等.涂覆层对光纤布拉格光栅应变传递的影响机理分析[J].仪器仪表学报,2016,37(6): 1233-1240. DOI: 10.3969/j.issn.0254-3087.2016.06.005.
[11]孙伟胜,施解龙,陈园园,等.含耐高温涂覆层长周期光纤光栅的温度特性研究[J].光子学报,2011,40(10):1490-1493. DOI: 10.3788/gzxb20114010.1490.
[12]郎昌鹏.光纤端面聚合物微干涉结构的制备及传感特性研究[D].哈尔滨:哈尔滨工业大学,2022. DOI: 10.27061/d.cnki.ghgdu.2022.000409.
[13]CHEN M Q, ZHAO Y, XIA F, et al. High sensitivity temperature sensor based on fiber air-microbubble Fabry-Perot interferometer with PDMS-filled hollow-core fiber[J]. Sensors and Actuators A: Physical, 2018, 275: 60-66. DOI: 10.1016/j.sna.2018.03.044.
[14]WANG Q, DU C, ZHANG J M, et al. Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating[J]. Optics Communications, 2016, 377: 89-93. DOI: 10.1016/j.optcom.2016.05.039.
[15]TIAN T, LI M, MA Y W, et al. Point-coated long-period fiber grating for temperature measurement[J]. Optics Letters, 2023, 48(11): 2785-2788. DOI: 10.1364/OL.487945.
[16]DENG L F, JIANG C, HU C J, et al. Highly sensitive temperature and gas pressure sensor based on long-period fiber grating inscribed in tapered two-mode fiber and PDMS[J]. IEEE Sensors Journal, 2023, 23(14): 15578-15585. DOI: 10.1109/JSEN.2023.3279091.
[17]杨美娟.飞秒激光直写小周期的长周期光纤光栅及其传感性能研究[D].武汉:华中科技大学,2023. DOI: 10.27157/d.cnki.ghzku.2021.003922.
[18]王肖璇.基于光敏聚合物的长周期微纳光纤光栅传感研究[D].哈尔滨:哈尔滨工程大学,2023. DOI: 10.27060/d.cnki.ghbcu.2023.001555.
[19]SHU X W, ZHANG L, BENNION I. Sensitivity characteristics of long-period fiber gratings[J]. Journal of Lightwave Technology, 2002, 20(2): 255-266. DOI: 10.1109/50.983240.
[20]SHU X W, ALLSOP T, GWANDU B, et al. Room-temperature operation of widely tunable loss filter[J]. Electronics Letters, 2001, 37(4): 216-218. DOI: 10.1049/el:20010166.
[21]MACDOUGALL T W, PILEVAR S, HAGGANS C W, et al. Generalized expression for the growth of long period gratings[J]. IEEE Photonics Technology Letters, 1998, 10(10): 1449-1451. DOI: 10.1109/68.720290.
[22]王义平.新型长周期光纤光栅特性研究[D].重庆:重庆大学,2003. DOI: 10.7666/d.y794936.
[23]HSU C Y, CHIANG C C, WEN H Y, et al. Long-period fiber grating sensor based on a conductive polymer functional layer[J]. Polymers, 2020, 12(9):2023. DOI: 10.3390/polym12092023.
[24]ZHANG Y X, WANG X X, TANG X Y, et al. Photosensitive polymer-based micro-nano long-period fiber grating for refractive index sensing[J]. Journal of Lightwave Technology, 2021, 39(21): 6952-6957. DOI: 10.1109/JLT.2021.3106651.
[25]JIANG W B, SUN S M, SONG J, et al. High-sensitivity humidity and temperature sensor by cascading a polyimide coated long period fiber grating and a polydimethylsiloxane wrapped Mach-Zehnder interferometer[J]. Review of Scientific Instruments, 2023, 94(12): 125002. DOI: 10.1063/5.0163910.
[1] LING Zhanjun, LI Hongtao, LU Hanglin, FU Gurui, HUANG Tianqi, LÜ Liang, YU Benli. Research on Refractive Index Sensing Based on Micro-nano Fiber Coupler [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 31-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[2] LI Zhixin, LIU Mingqi. A Dissimilarity Feature-Driven Decoupled Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 57 -71 .
[3] TANG Liang, CHEN Bowen, NIU Yisen, MA Ronggeng. A YOLOv8-based Real-time Object Detection Method for Vehicles and Pedestrians in Foggy Weather[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 72 -83 .
[4] LIANG Yinjie, NAN Xinyuan, CAI Xin, LI Yunpeng, GOU Haiguang. Bridge Defect Detection Based on Data Augmentation and Improved YOLOv8[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 84 -97 .
[5] ZHANG Xiaoqian, WANG Lei. Singular Cycles Bifurcation Leading to Limit Cycles in 2-Dimensional Piecewise Affine Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 98 -105 .
[6] GUO Xinxin, ZHONG Yansheng. Existence of Normalized Solutions for a Class of Nonlinear p-Laplace Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 106 -112 .
[7] TIAN Liang, DAI Jiajia, LI Xianqi. Additive Transformation Model of Multivariate Recurrent Events Data under Generalized Case Cohort Design[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 113 -127 .
[8] WANG Cuihua, HAN Zhibo. Impacts of Future Climate Change on Suitability of Spring Corn Planting in Guizhou, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 128 -142 .
[9] LÜ Shuang, LIU Qianyu, ZHANG Xiangru. Risk Assessment of Geohazards Using AHP-Information Model in Guilin, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 143 -155 .
[10] JIA Yanhong, HUANG Junzhong, WU Chunzhu, HU Hongwen. Multi-scenario Ecosystem Service Assessment of Lijiang River Basin Based on PLUS-InVEST Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 156 -169 .