Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (1): 156-167.doi: 10.16088/j.issn.1001-6600.2023050807
Previous Articles Next Articles
ZHANG Mengyang1, HOU Dongrui1, LUO Jing2, SUN Qinggong2, YANG Hao1, WANG Jianfeng1*
[1] BEN MORDECHAY E, MORDEHAY V, TARCHITZKY J, et al. Fate of contaminants of emerging concern in the reclaimed wastewater-soil-plant continuum[J]. Science of the Total Environment, 2022, 822: 153574.DOI: 10.1016/j.scitotenv.2022.153574. [2] ZHU S J, LI H J, WANG L, et al. Oxygen vacancies-rich α@δ-MnO2 mediated activation of peroxymonosulfate for the degradation of CIP: the role of electron transfer process on the surface[J]. Chemical Engineering Journal, 2023, 458: 141415.DOI: 10.1016/j.cej.2023.141415. [3] YU M, TEEL A L, WATTS R J. Activation of peroxymonosulfate by subsurface minerals[J]. Journal of Contaminant Hydrology, 2016, 191: 33-43.DOI: 10.1016/j.jconhyd.2016.05.001. [4] CHESNEY A R, BOOTH C J, LIETZ C B, et al. Peroxymonosulfate rapidly inactivates the disease-associated prion protein[J]. Environmental Science & Technology, 2016, 50(13): 7095-7105.DOI: 10.1021/acs.est.5b06294. [5] WANG C, DU J Y, LIANG Z J, et al. High-efficiency oxidation of fluoroquinolones by the synergistic activation of peroxymonosulfate via vacuum ultraviolet and ferrous iron[J]. Journal of Hazardous Materials, 2022, 422: 126884.DOI: 10.1016/j.jhazmat.2021.126884. [6] KERMANI M, FARZADKIA M, MOROVATI M, et al. Degradation of furfural in aqueous solution using activated persulfate and peroxymonosulfate by ultrasound irradiation[J]. Journal of Environmental Management, 2020, 266: 110616.DOI: 10.1016/j.jenvman.2020.110616. [7] ZHAO Y, WU D, CHEN Y, et al. Thermal removal of partial nitrogen atoms in N-doped graphene for enhanced catalytic oxidation[J]. Journal of Colloid and Interface Science, 2021, 585: 640-648. DOI: 10.1016/j.jcis.2020.10.043. [8] FENG Y, LIU J H, WU D L, et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280: 514-524. DOI: 10.1016/j.cej.2015.05.121. [9] ZHANG L Y, DENG J W, OU J L, et al. Boric acid enhanced degradation of organic pollutant by Cu(Ⅱ)/peroxy-monosulfate: performance and mechanism[J]. Separation and Purification Technology, 2022, 293: 121135.DOI: 10.1016/j.seppur.2022.121135. [10] SHI X, HONG P D, HUANG H Q, et al. Enhanced peroxymonosulfate activation by hierarchical porous Fe3O4/Co3S4 nanosheets for efficient elimination of rhodamine B: mechanisms, degradation pathways and toxicological analysis[J]. Journal of Colloid and Interface Science, 2022, 610: 751-765. DOI: 10.1016/j.jcis.2021.11.118. [11] HU G W, HUANG Z P, HU C X, et al. Selective photocatalytic hydrogenation of α,β-unsaturated aldehydes on Au/CuCo2O4 nanotubes under visible-light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8288-8294. DOI: 10.1021/acssuschemeng.0c01852. [12] NAVEENKUMAR P, PARUTHIMAL KALAIGNAN G. Fabrication of core-shell like hybrids of CuCo2S4@NiCo(OH)2 nanosheets for supercapacitor applications[J]. Composites Part B: Engineering, 2019, 173: 106864. DOI: 10.1016/j.compositesb.2019.05.075. [13] HWANG S G, RYU S H, YUN S R, et al. Behavior of NiO-MnO2/MWCNT composites for use in a supercapacitor[J]. Materials Chemistry and Physics, 2011, 130(1/2): 507-512. DOI: 10.1016/j.matchemphys.2011.07.022. [14] VERMA S, JOSHI H M, JAGADALE T, et al. Nearly monodispersed multifunctional NiCo2O4 spinel nanoparticles: magnetism, infrared transparency, and radiofrequency absorption[J]. The Journal of Physical Chemistry C, 2008, 112(39): 15106-15112. DOI: 10.1021/jp804923t. [15] SHANMUGAVANI A, SELVAN R K. Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors[J]. Electrochimica Acta, 2016, 188: 852-862. DOI: 10.1016/j.electacta.2015.12.077. [16] MEYER E L, MBESE J Z, AGORO M A, et al. Optical and structural-chemistry of SnS nanocrystals prepared by thermal decomposition of bis(N-di-isopropyl-N-octyl dithiocarbamato)tin(Ⅱ) complex for promising materials in solar cell applications[J]. Optical and Quantum Electronics, 2020, 52(2): 90. DOI: 10.1007/s11082-020-2212-2. [17] XU C J, TAN J K, ZHANG X D, et al. Petal-like CuCo2O4 spinel nanocatalyst with rich oxygen vacancies for efficient PMS activation to rapidly degrade pefloxacin[J]. Separation and Purification Technology, 2022, 291: 120933. DOI: 10.1016/j.seppur.2022.120933. [18] ROY K, GOPINATH C S. UV photoelectron spectroscopy at near ambient pressures: mapping valence band electronic structure changes from Cu to CuO[J]. Analytical Chemistry, 2014, 86(8): 3683-3687. DOI: 10.1021/ac4041026. [19] XU P, LI X, WEI R, et al. High adaptability and stability FeCo2O4/diatomite composite for efficient peroxymonosulfate activation: performance, water matrix impact, and mechanism[J]. Chemical Engineering Journal, 2023, 462: 142204. DOI: 10.1016/j.cej.2023.142204. [20] ZHU H, ZHANG J F, YANZHANG R P, et al. When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting[J]. Advanced Materials, 2015, 27(32): 4752-4759. DOI: 10.1002/adma.201501969. [21] DONG X B, DUAN X D, SUN Z M, et al. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis[J]. Applied Catalysis B: Environmental, 2020, 261: 118214. DOI: 10.1016/j.apcatb.2019.118214. [22] ZHAO Y, AN H Z, DONG G J, et al. Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: evolution of reactive oxygen species and mechanism[J]. Chemical Engineering Journal, 2020, 388: 124371. DOI: 10.1016/j.cej.2020.124371. [23] HU W, CHEN R Q, XIE W, et al. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications[J]. ACS Applied Materials & Interfaces, 2014, 6(21): 19318-19326. DOI: 10.1021/am5053784. [24] LI W, LI Y X, ZHANG D Y, et al. CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate[J]. Journal of Hazardous Materials, 2020, 381: 121209. DOI: 10.1016/j.jhazmat.2019.121209. [25] LUO J M, BO S F, QIN Y N, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 395: 125036. DOI: 10.1016/j.cej.2020.125063. [26] FAN Y H, LI Y Q, HAYAT F, et al. Multi-targeted removal of coexisted antibiotics in water by the synergies of radical and non-radical pathways in PMS activation[J]. Separation and Purification Technology, 2023, 305: 122475. DOI: 10.1016/j.seppur.2022.122475. [27] LAI L D, YAN J F, LI J, et al. Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: performance, biotoxicity, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 343: 676-688. DOI: 10.1016/j.cej.2018.01.035. [28] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes(AOPs)[J]. Environmental Science and Technology, 2014, 48(4): 2344-2351. DOI: 10.1021/es404118q. [29] GHAUCH A, BAALBAKI A, AMASHA M, et al. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water[J]. Chemical Engineering Journal, 2017, 317: 1012-1025. DOI: 10.1016/j.cej.2017.02.133. [30] ANIPSITAKIS G P, DIONYSIOU D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science and Technology, 2003, 37(20): 4790-4797. DOI: 10.1021/es0263792. [31] NIE M H, YANG Y, ZHANG Z J, et al. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2014, 246: 373-382. DOI: 10.1016/j.cej.2014.02.047. [32] YIN C K, ZHOU S J, ZHANG K Y, et al. Crednerite CuMnO2 as highly efficient Fenton-like catalysts for p-nitrophenol removal:synergism between Cu(Ⅰ) and Mn(Ⅲ)[J]. Journal of Cleaner Production, 2021, 319: 128640. DOI: 10.1016/j.jclepro.2021.128640. [33] TIAN Y H, YAO S J, ZHOU L, et al. Efficient removal of antibiotic-resistant bacteria and intracellular antibiotic resistance genes by heterogeneous activation of peroxymonosulfate on hierarchical macro-mesoporous Co3O4-SiO2 with enhanced photogenerated charges[J]. Journal of Hazardous Materials, 2022, 430: 127414. DOI: 10.1016/j.jhazmat.2021.127414. [34] SUN J Q, LIU L F, YANG F L. A visible-light-driven photocatalytic fuel cell/peroxymonosulfate (PFC/PMS) system using blue TiO2 nanotube arrays (TNA) anode and Cu-Co-WO3 cathode for enhanced oxidation of organic pollutant and ammonium nitrogen in real seawater[J]. Applied Catalysis B: Environmental, 2022, 308: 121215. DOI: 10.1016/j.apcatb.2022.121215. |
[1] | LIU Li'e, FANG Zhigang, SONG Jingli, YUAN Lin, WEI Daixia. Thermodynamics and Kinetics of Isomerization Reaction of Two Dimensional CrPS4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 122-131. |
[2] | YANG Wenjing, DENG Yulian, CHEN Zhuxin, TAO Afeng, WEI Lixin, WU Jinyan, TIAN Yihao, SU Chengyuan. Effects of Ciprofloxacin on Operation Efficiency and Microbial Community Response Characteristics of Anaerobic Reactor for Treatment Phosphorus-Containing Wastewater [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 158-168. |
[3] | YANG Wen, SU Yingjie, HOU Dongrui, LUO Jing, SUN Qinggong, ZHANG Mengyang, YANG Hao, WANG Jianfeng. Preparation of CuO/MIL(Cr, Cu) Composite and Its Performance in Fenton-like Catalytic Degradation of Phenol [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 210-220. |
|