Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 9-19.doi: 10.16088/j.issn.1001-6600.2022062401
Previous Articles Next Articles
TIAN Sheng*, ZHANG Jinming, LI Chengwei, LI Jia
[1] HONG J C, WANG Z P, YAO Y T. Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks[J]. Applied Energy, 2019, 251: 113381. DOI:10.1016/j.apenergy.2019.113381. [2] 贾爱芹,陈建军,蒋志强,等.基于灰色支持向量机的汽车制动系统故障诊断与预测[J].机械设计与研究,2015,31(1):149-152. DOI:10.13952/j.cnki.jofmdr.2015.0039. [3] GALAGEDARAGE DON M, KHAN F. Process fault prognosis using hidden Markov model-Bayesian networks hybrid model[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12041-12053. DOI:10.1021/acs.iecr.9b00524. [4] 许水清,刘锋,何怡刚,等.基于自适应滑模观测器的新能源汽车驱动系统电流传感器微小故障诊断[J/OL].中国电机工程学报:1-13[2022-11-06].http://kns.cnki.net/kcms/detail/11.2107.TM.20221012.1643.016.html. [5] WANG X, HAN T. Transformer fault diagnosis based on stacking ensemble learning[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(12): 1734-1739. DOI:10.1002/tee.23247. [6] 马新娜,赵猛,祁琳.基于卷积脉冲神经网络的故障诊断方法研究[J].广西师范大学学报(自然科学版),2022,40(3):112-120. DOI:10.16088/j.issn.1001-6600.2021070808. [7] WEN P G, ZHI M, ZHANG G Y, et al. Fault prediction of elevator door system based on PSO-BP neural network[J]. Engineering, 2016, 8(11): 761-766. DOI:10.4236/eng.2016.811068. [8] GANGSAR P, TIWARI R. Multiclass fault taxonomy in rolling bearings at interpolated and extrapolated speeds based on time domain vibration data by SVM algorithms[J]. Journal of Failure Analysis and Prevention, 2014, 14(6): 826-837. DOI:10.1007/s11668-014-9893-4. [9] 戴银娟,付石磊.基于改进C4.5算法的新型车辆故障预测方法研究[J].常熟理工学院学报,2019,33(5):72-77. DOI:10.16101/j.cnki.cn32-1749/z.2019.05.018. [10] 陈维刚, 张会林. 基于RF-LightGBM算法在风机叶片开裂故障预测中的应用[J]. 电子测量技术, 2020, 43(1): 162-168. DOI:10.19651/j.cnki.emt.1903316. [11] 刘金硕,刘必为,张密,等. 基于GBDT的电力计量设备故障预测[J]. 计算机科学, 2019, 46(S1): 392-396. [12] 杨正森.基于FTRL和XGBoost算法的产品故障预测模型[J].计算机系统应用,2019,28(3):179-184. DOI:10.15888/j.cnki.csa.006808. [13] JOHNSON J M, KHOSHGOFTAAR T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6(1): 27. DOI:10.1186/s40537-019-0192-5 [14] BAUDER R A, KHOSHGOFTAAR T M, HASANIN T. Data sampling approaches with severely imbalanced big data for Medicare fraud detection[C]//2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI). Piscataway, NJ: IEEE, 2018: 137-142. DOI:10.1109/ICTAI.2018.00030. [15] GUO J, WAN X, LIN H, et al. An active learning method based on mistake sampling for large scale imbalanced classification[C]//2017 International Conference on Service Systems and Service Management. Piscataway, NJ: IEEE, 2017: 1-6. DOI:10.1109/ICSSSM.2017.7996301. [16] SEIFFERT C, KHOSHGOFTAAR T M, VAN HULSE J, et al. A hybrid approach to alleviating class imbalance[J]. IEEE Transactions On Systems, Man, and Cybernetics-Part A: Systems And Humans, 2010,40(1):185-197. DOI:10.1109/TSMCA.2009.2029559. [17] BITEUS J, LINDGREN T. Planning flexible maintenance for heavy trucks using machine learning models, constraint programming, and route optimization[J]. SAE International Journal of Materials and Manufacturing, 2017, 10(3): 306-315. DOI:10.4271/2017-01-0237. [18] 颜诗旋,朱平,刘钊.基于改进LightGBM模型的汽车故障预测方法研究[J].汽车工程,2020,42(6):815-819,825. DOI:10.19562/j.chinasae.qcgc.2020.06.016. [19] 肖梁,韩璐,魏鹏飞,等.基于Bagging集成学习的多集类不平衡学习[J].计算机技术与发展,2021,31(10):1-6. DOI:10.3969/j.issn.1673-629X.2021.10.001. [20] COSTA C F, NASCIMENTO M A. IDA 2016 industrial challenge: using machine learning for predicting failures[C]//Advances in Intelligent Data Analysis XV. Cham: Springer, 2016: 381-386. DOI:10.1007/978-3-319-46349-0_33. [21] KE G L, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on NeuralInformation Processing Systems. Red Hook: Curran Associates Inc., 2017:3149-3157. [22] 颜诗旋. 面向汽车大数据类别不平衡特点的机器学习方法及其应用研究[D].上海:上海交通大学,2020. DOI:10.27307/d.cnki.gsjtu.2020.001714. [23] 张弛,李浩,胡海涛,等.基于自动特征工程的飞行器轴承故障诊断[J].化工学报,2021,72(S1):430-436,569. DOI:10.11949/0438-1157.20201539. [24] CERQUEIRA V, MONIZ N, SOARES C. VEST: automatic feature engineering for forecasting[J/OL]. Machine Learning: 1-23[2022-11-06].http://doi.org/10.1007/s10994-021-05959-y. DOI: 10.1007/s10994-021-05959-y. [25] XIA S X, ZHOU X F, SHI H B, et al. A fault diagnosis method based on attention mechanism with application in Qianlong-2 autonomous underwater vehicle[J]. Ocean Engineering, 2021, 233: 109049. DOI:10.1016/j.oceaneng.2021.109049. |
[1] | MA Xinna, ZHAO Men, QI Lin. Fault Diagnosis Based on Spiking Convolution Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 112-120. |
[2] | LIN Yue. The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 25-33. |
|