Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 1-8.doi: 10.16088/j.issn.1001-6600.2022101903

    Next Articles

Advances in Control of Pine Wilt by Establishing Mixed Stand of Masson Pine and Eucalypts

HUANG Jianhua1,2*, XIE Chunjun3*, WEI Changjiang3, ZHANG Ting3, XIAO Jimou3, LIAO Changkun3, HUANG Pengcheng3, HE Zhen4, WU Lichao2   

  1. 1. Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province (Central South University of Forestry and Technology), Changsha Hunan 410004, China;
    2. Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Changsha Hunan 410004, China;
    3. Guangxi Zhuang Autonomous Region State-owned Sanmenjiang Forest Farm, Liuzhou Guangxi 545006, China;
    4. Institute of Forest and Grassland Protection, Hunan Academy of Forestry, Changsha Hunan 410004, China
  • Received:2022-10-19 Revised:2022-12-04 Online:2023-05-25 Published:2023-06-01

Abstract: Artificial pure stands of masson pine (Pinus massoniana Lamb.) has a simple structure and extremely delicate ecosystem, and is easy to induce a series of ecological problems. With the changeover in function orientation, the structure of the masson pine plantation needs to be altered correspondingly, and the destructive damage to pine forests by pine wilt unquestionably intensifies the urgency of the alteration of the masson pine plantation. In this paper, the advances in pine wilt and its control, mixed stands of masson pine, volatiles of masson pine and eucalypts are reviewed, and the feasibility establishing mixed stand of masson pine and eucalypts to control pine wilt are discussed. It's deemed that it has a very strong feasibility and broad prospect of application to establish mixed stand of masson pine and eucalypts for the control of pine wilt.

Key words: masson pine, eucalypts, mixed stand, pine wilt, volatiles

CLC Number:  S763.18
[1] 王曦茁, 曹业凡, 汪来发, 等. 松材线虫病发生及防控现状[J]. 环境昆虫学报, 2018, 40(2): 256-267. DOI:10.3969/j.issn.1674-0858.2018.02.3.
[2] 国家林业和草原局.国家林业和草原局公告(2022年第6号)(2022年松材线虫病疫区)[EB/OL]. (2022-04-06)[2022-07-05].http://www.forestry.gov.cn/main/6206/20220406/151041215456755.html.
[3] 张旭, 赵京京, 闫峻, 等. 2017年中国大陆松材线虫病灾害经济损失评估[J]. 北京林业大学学报, 2020, 42(10): 96-106. DOI:10.12171/j.1000-1522.20190210.
[4] 封小慧, 张宾, 孙江华. 伴生微生物与松材线虫-媒介天牛互作关系的研究进展[J]. 中国森林病虫, 2022, 41(3): 30-37. DOI:10.19688/j.cnki.issn1671-0886.20220029.
[5] 理永霞, 王璇, 刘振凯, 等. 松材线虫致病机理研究进展[J]. 中国森林病虫, 2022, 41(3): 11-20. DOI:10.19688/j.cnki.issn1671-0886.20220015.
[6] JEON H W, PARK A R, SUNG M, et al. Systemic acquired resistance-mediated control of pine wilt disease by foliar application with methyl salicylate[J]. Frontiers in Plant Science, 2022, 12: 812414. DOI:10.3389/fpls.2021.812414.
[7] RODRIGUES A M, CARRASQUINHO I, ANTÓNIO C. Primary metabolite adjustments associated with pinewood nematode resistance in Pinus pinaster[J]. Frontiers in Plant Science, 2021, 12: 777681. DOI:10.3389/fpls.2021.777681.
[8] ZHAO B G. Pine wilt disease in China[M]//ZHAO B G, FUTAI K, SUTHERLAND J R, et al. Pine Wilt Disease. Toky: Springer, 2008:18-25. DOI:10.1007/978-4-431-75655-2-4.
[9] LI M, LI H, SHENG R C,et al. The first record of Monochamus saltuarius (Coleoptera; Cerambycidae) as vector of Bursaphelenchus xylophilus and its new potential hosts in China[J]. Insects, 2020, 11(9): 636. DOI:10.3390/insects11090636.
[10] MAMIYA Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus[J]. Annual Review of Phytopathology, 1983, 21: 201-220. DOI:10.1146/annurev.py.21.090183.001221.
[11] YANO S. Investigation on pine death in Nagasaki prefecture[J]. Sanrin-Kouhou, 1913, 4: 1-14.
[12] MAMIYA Y. History of pine wilt disease in Japan[J]. Journal of Nematology, 1988, 20(2): 219-226. DOI:10.1002/jez.1402440122.
[13] KIM J, JUNG Y H, LEE S M. Diel rhythmicity of field responses to synthetic pheromone lures in the pine sawyer Monochamus saltuarius[J]. Insects, 2021, 12(5): 441. DOI:10.3390/insects12050441.
[14] MAMIYA Y, ENDA N. Transmission of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae) by Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Nematologica, 1972, 18(2): 159-162. DOI:10.1163/187529272X00395.
[15] SATO H, TAKESHI S, KOBAYASHI M. Transmission of Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle (Nematoda, Aphelenchoididae) by Monochamus saltuarius (Gebler) (Coleoptera, Cerambycidae)[J]. Journal of the Japanese Forestry Society, 1987, 69(12): 492-496. DOI:10.11519/jjfs1953.69.12_492.
[16] HU S J, NING T, FU D Y, et al. Dispersal of the Japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae), in mainland China as inferred from molecular data and associations to indices of human activity[J]. PLoS One, 2013, 8(2): e57568. DOI:10.1371/journal.pone.0057568.
[17] MENG F L, LIU Z K, LI Y X,et al. Genes encoding potential molecular mimicry proteins as the specific targets for detecting Bursaphelenchus xylophilus in PCR and loop-mediated isothermal amplification assays[J]. Frontiers in Plant Science, 2022, 13: 890949. DOI:10.3389/fpls.2022.890949.
[18] ZHOU Q Z, LIU Y, WANG Z,et al. Rapid on-site detection of the Bursaphelenchus xylophilus using recombinase polymerase amplification combined with lateral flow dipstick that eliminates interference from primer-dependent artifacts[J]. Frontiers in Plant Science, 2022, 13: 856109. DOI:10.3389/fpls.2022.856109.
[19] 石娟, 骆有庆, 宋冀莹, 等. 松材线虫入侵后不同伐倒干扰强度对马尾松林植物多样性的影响[J]. 应用生态学报, 2006, 17(7): 1157-1163. DOI:10.13287/j.1001-9332.2006.0231.
[20] 黄延安. 营林卫生伐防控松墨天牛传播松材线虫病研究[J]. 生物灾害科学, 2015, 38(1): 31-34. DOI:10.3969/j.issn.2095-3704.2015.01.008.
[21] 张华锋, 陈思宇, 刘刚, 等. 松材线虫病疫木卫生伐对马尾松纯林林分结构的影响[J]. 浙江农林大学学报, 2020, 37(4): 745-751. DOI:10.11833/j.issn.2095-0756.20190487.
[22] 谢中, 付甫永. 不同林间清理强度对松材线虫病疫情的影响试验[J]. 安徽农学通报, 2020, 26(13): 111-112,169. DOI:10.16377/j.cnki.issn1007-7731.2020.13.045.
[23] 毛朝明, 阙利芳, 蒋灵华. 基于森林演替理论的松材线虫综合治理路径[J]. 生物灾害科学, 2020, 43(2): 138-143. DOI:10.3969/j.issn.2095-3704.2020.02.26.
[24] 桂赵生. 松材线虫病疫木伐除区的生态修复措施:以黄山市为例[J]. 安徽林业科技, 2022, 48(1): 52-53,59.
[25] 陈献志, 楚秀丽, 黄盛怡, 等. 松材线虫病除治迹地营造的15年生木荷林生长分析[J]. 西部林业科学, 2021, 50(4): 46-53. DOI:10.16473/j.cnki.xblykx1972.2021.04.008.
[26] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 造林技术规程:GB/T 15776—2016[S]. 北京:中国标准出版社,2016.
[27] 孟祥江, 何邦亮, 马正锐, 等. 我国马尾松林经营现状及近自然育林探索[J]. 世界林业研究, 2018, 31(3): 63-67. DOI:10.13348/j.cnki.sjlyyj.2018.0023.y.
[28] 张世良, 吕茂奎, 邓翠, 等. 侵蚀红壤区马尾松人工林恢复过程中凋落物碳氮归还量变化[J]. 亚热带资源与环境学报, 2021, 16(1): 16-22. DOI:10.19687/j.cnki.1673-7105.2021.01.003.
[29] 郭东强, 黄晓露, 任世奇, 等. 马尾松、桉树及其混交林土壤养分变化特征及评价[J]. 桉树科技, 2015, 32(3): 14-21. DOI:10.13987/j.cnki.askj.2015.03.004.
[30] 郭东强, 黄晓露, 颜权, 等. 马尾松、巨尾桉及其混交林土壤微量元素调查[J]. 广西林业科学, 2016, 45(1): 24-29. DOI:10.19692/j.cnki.gfs.2016.01.005.
[31] 龙佳峰, 雷定战, 潘婷, 等. 巨尾桉×马尾松混交林树高与胸径的相关生长关系分析[J]. 陕西农业科学, 2018, 64(5): 76-81.
[32] 颜权, 李春宁, 陆滟灵, 等. 尾巨桉与马尾松混交林生长效应调查分析[J]. 桉树科技, 2019, 36(3): 28-35. DOI:10.13987/j.cnki.askj.2019.03.005.
[33] 黄承标, 皮顺德. 柠檬桉马尾松混交林效益的初步研究[J]. 林业科技通讯, 1991(9): 16-20. DOI:10.13456/j.cnki.lykt.1991.09.008.
[34] 陈双双, 党鹏, 朱宁华, 等. 两种石漠化等级下樟树-马尾松混交林林分结构及物种多样性[J]. 中南林业科技大学学报, 2022, 42(4): 117-128. DOI:10.14067/j.cnki.1673-923x.2022.04.013.
[35] 罗创福, 李万年, 邓冬莲, 等. 不同修枝强度对红锥马尾松混交林幼林生长及光环境的影响[J].北华大学学报(自然科学版), 2021, 22(5): 665-671. DOI:10.11713/j.issn.1009-1822.2021.05.023.
[36] 王倩, 李振双, 杨富成, 等. 广西凭祥红锥-马尾松混交林菌根际微生物群落结构[J]. 菌物学报, 2021, 40(6): 1343-1356. DOI:10.13346/j.mycosystema.200339.
[37] 雷蕾, 肖文发, 曾立雄, 等. 三峡库区2种马尾松混交林土壤团聚体酶活性分布特征[J]. 生态学报, 2020, 40(17): 6179-6188. DOI:10.5846/stx6201912252783.
[38] 林润东, 张进如, 李石一宁, 等. 马尾松混交林的超产效应及其影响因素[J]. 亚热带资源与环境学报, 2022, 17(1): 43-50. DOI:10.19687/j.cnki.1673-7105.2022.01.006.
[39] ACHOTEGUI-CASTELLS A, LLUSIĂ J, HÓDER J A,et al. Needle terpene concentrations and emissions of two coexisting subspecies of Scots pine attacked by the pine processionary moth (Thaumetopoea pityocampa)[J]. Acta Physiologiae Plantarum, 2013, 35(10): 3047-3058. DOI:10.1007/s11738-013-1337-3.
[40] BRACHO-NUNEZ A, KNOTHE N M, COSTA W R,et al. Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under short-and long-term inundation of trees from Amazonian floodplains[J]. SpringerPlus, 2012, 1: 9. DOI:10.1186/2193-1801-1-9.
[41] GARGALLO-GARRIGA A, SARDANS J, PÉREZ-TRUJILLO M,et al. Opposite metabolic responses of shoots and roots to drought[J]. Scientific Reports, 2014, 4: 6829. DOI:10.1038/SREP06829.
[42] 马尾松抗松毛虫抗性研究组. 马尾松抗松毛虫植株的抗性机制研究[J]. 林业科学, 1990, 26(2): 133-141.
[43] 赵成华, 伍德明, 阎云花, 等. 马尾松针叶中挥发性成分的鉴定及其对马尾松毛虫的触角电位反应[J]. 林业科学, 1995, 31(2): 125-131.
[44] 徐延熙, 孙绪艮, 秦小薇, 等. 被害马尾松(Pinus massoniana)针叶挥发性物质的提取、鉴定及蚕饰腹寄蝇(Blepharipa zebina)的电生理活性[J]. 生态学报, 2007, 27(11): 4403-4411.
[45] 赵成华, 阎云花. 马尾松针叶中的挥发物质对马尾松毛虫产卵行为的影响[J]. 林业科学, 2003, 39(6): 91-93. DOI:10.11707/j.1001-7488.20030615.
[46] 全文选, 丁贵杰. 干旱胁迫下马尾松幼苗针叶挥发性物质与内源激素的变化[J]. 林业科学, 2017, 53(4): 49-55. DOI:10.11707/j.1001-7488.20170406.
[47] 徐福元, 席客, 徐刚, 等. 不同龄级马尾松对松材线虫病抗性的探讨[J]. 南京林业大学学报(自然科学版), 1994, 18(3): 27-33. DOI:10.3969/j.jssn.1000-2006.1994.03.005.
[48] 赵振东, 李冬梅, 胡樨萼, 等. 抗松材线虫病马尾松种源化学成分与抗性机理研究(第Ⅱ报):马尾松种源抗性与中性萜类化合物组成差异关系研究[J]. 林产化学与工业, 2001, 21(1): 56-60. DOI:10.3321/j.issn:0253-2417.2001.01.011.
[49] 赵振东, 胡樨萼, 李冬梅, 等. 抗松材线虫病马尾松种源化学成分与抗性机理研究(第Ⅲ报):接种松材线虫引起抗性马尾松种源中性萜类含量变化关系的研究[J]. 林产化学与工业, 2001, 21(3): 52-58. DOI:10.3321/j.issn:0253-2417.2001.03.012.
[50] 谈家金, 郝德君, 潘玉雯, 等. 几种松树挥发物对松材线虫行为的影响[J]. 东北林业大学学报, 2009, 37(12): 58-59.
[51] 董广平, 杨李. 马尾松挥发性气味成分与其抗松材线虫病相关性试验初报[J]. 安徽林业科技, 2015, 41(6): 12-14,34.
[52] 杨益琴, 王石发, 李艳苹, 等. α-蒎烯含氮衍生物的合成及其杀松材线虫活性的研究[J]. 化学学报, 2009, 67(21): 2463-2474. DOI:10.3321/j.issn:0567-7351.2009.21.012.
[53] 刘彬, 刘青华, 周志春, 等. 马尾松β-蒎烯合酶基因克隆以及对松材线虫侵染的响应[J]. 林业科学研究, 2020, 33(6): 1-12. DOI:10.13275/j.cnki.lykxyj.2020.06.001.
[54] 王璇, 理永霞, 张星耀. 营养和蒎烯胁迫条件下松材线虫雌雄比变化规律[J]. 林业科学, 2017, 53(8): 149-154. DOI:10.11707/j.1001-7488.20170817.
[55] 刘振凯, 崔晶, 理永霞, 等. α和β-蒎烯胁迫下松材线虫转录组特征[J].东北林业大学学报, 2020, 48(5): 93-98. DOI:10.13759/j.cnki.dlxb.2020.05.018.
[56] 王璇, 理永霞, 刘振宇, 等. 松材线虫CYP450基因与松树蒎烯类物质代谢的相关性[J]. 林业科学, 2017, 53(6): 105-110. DOI:10.11707/j.1001-7488.20170612.
[57] 赵振东, 徐福元. 松树化学与松材线虫病关系研究进展[J]. 林产化学与工业, 1998, 18(2): 83-88.
[58] 宁眺, 樊建庭, 方宇凌, 等.不同危害状态下寄主萜烯挥发物含量的变化及松墨天牛对其组分的触角电位反应[J]. 昆虫学报, 2006,49(2): 179-188. DOI:10.16380/j.kcxb.2006.02.003.
[59] 林长春, 陆高, 周成枚, 等. 补充营养材料对松褐天牛成虫存活期的影响[J].林业科学研究, 2003, 16(1): 69-74. DOI:10.3321/j.issn:1001-1498.2003.01.012.
[60] 林长春, 赖明惠, 陆高, 等. 补充营养材料对松褐天牛雌成虫繁殖力的影响[J]. 林业科学研究, 2003, 16(4):398-403. DOI:10.3321/j.issn:1001-1498.2003.04.004.
[61] 樊建庭, 张冬勇, 章祖平, 等. 松墨天牛取食行为及其与寄主挥发物的关系[J]. 浙江农林大学学报, 2014, 31(1): 78-82. DOI:10.11833/j.issn.2095-0756.2014.01.012.
[62] 郝德君, 张永慧, 戴华国, 等. 松墨天牛对寄主树木的产卵选择[J]. 昆虫学报, 2005, 48(3): 460-464. DOI:10.16380/j.kcxb.2005.03.024.
[63] 王健敏, 代艳梅, 陈晓鸣, 等. 松墨天牛成虫对寄主颜色的视觉选择研究[J]. 环境昆虫学报, 2012, 34(2): 236-239. DOI:10.3969/j.issn.1674-0858.2012.02.17.
[64] 黄丽平, 伍影瑶, 赖俊杰, 等. 桉属挥发油化学成分及其生物活性研究进展[J]. 天然产物研究与开发, 2022, 34(3): 505-539. DOI:10.16333/j.1001-6880.2022.3.018.
[65] 吴耀军, 常明山, 黎贵倾, 等. 桉叶挥发物变化及桉树枝瘿姬小蜂趋性反应[J]. 森林与环境学报, 2015, 35(1): 38-44. DOI:10.13324/j.cnki.jfcf.2015.01.007.
[66] 陈月圆, 卢凤来, 李典鹏, 等. 不同品种桉树叶挥发性成分的GC-MS分析[J]. 广西植物, 2010, 30(6): 895-898. DOI:10.3969/j.issn.1000-3142.2010.06.034.
[67] 陈友地, 杨伦, 李淑秀, 等. 桉叶精油化学组分研究[J]. 林产化学与工业, 1983,3(2): 14-31.
[68] 田玉红, 刘雄民, 周永红, 等. 柠檬桉叶挥发性成分的提取及成分分析[J]. 色谱, 2005, 23(6): 651-654. DOI:10.3321/j.issn:1000-8713.2005.06.018.
[69] 陈燕銮, 刘秋琼, 林秋晓, 等. 三种不同产地桉叶挥发油提取及其成分分析[J]. 医药导报, 2009, 28(7): 852-853. DOI:10.3870/yydb.2009.07.010.
[70] 陈默, 余永莉. 桉叶油的化学成分及其生物活性研究进展[J]. 中国现代医药杂志, 2014, 16(4): 97-100. DOI:10.3969/j.issn.1672-9463.2014.04.046.
[71] 田玉红, 张祥民, 黄泰松, 等. 桉叶油的研究进展[J]. 食品与发酵工业, 2007, 33(10): 139-143.
[72] 刘小香, 陈秋波, 王真辉, 等. 巨尾桉挥发油对真菌和昆虫的化感作用[J]. 生态学杂志, 2007, 26(6): 835-839. DOI:10.3321/j.issn:1000-4890.2007.06.012.
[73] 邹华南. 不同混交模式马尾松林与松墨天牛种群动态的关系[J]. 生物灾害科学, 2015, 38(2): 133-136. DOI:10.3969/j.issn.2095-3704.2015.02.011.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XUE Yang,ZENG Qingke,XIA Haiying,WANG Wentao. Remote Sensing Image Fusion Based on Convolutional Neural Network Super-resolution Reconstruction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 33 -41 .
[2] HUANG Yuanjie, LI Weidong, MO Xiaomin. Comparative Study on the Preparation Methods of Transmission ElectronMicroscope Negative Staining Specimens for Plant Endophyte[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 127 -130 .
[3] LIANG Shi-chu, TIAN Hua-li, TIAN Feng, XIA Yi, QIN Ying-ying. Wetland Vegetation Types and Their Distribution Characteristics in Lijiang River[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 115 -119 .
[4] ZHANG Kechu, YUAN Peisong, HUANG Henglian, TANG Xiaoping, ZHOU Qihai, HUANG Zhonghao. Inter-site Variation in Dietary Composition of White-headed Langurs (Trachypithecus leucocephalus)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 75 -81 .
[5] HUANG Liming,CHEN Weizheng,YAN Hongfei,CHEN Chong. A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 13 -22 .
[6] QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27 -37 .
[7] GE Yifei, ZHENG Yanbin. Private Information Retrieval Schemes with Erasure-correcting or Error-correcting Properties[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 33 -44 .
[8] XU Lunhui, CAO Yuchao, LIN Peiqun. Location and Dispatching of Multiple Emergency Materials Center Based on Fusion Immune Optimization and Genetic Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 1 -13 .
[9] BIN Shiyu, LIAO Fang, DU Xuesong, XU Yilan, WANG Xin, WU Xia, LIN Yong. Research Progress on Cold Tolerance of Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 10 -16 .
[10] LIU Jing, BIAN Xun. Characteristics of the Orthoptera Mitogenome and Its Application[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 17 -28 .