Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 71-80.doi: 10.16088/j.issn.1001-6600.2021060803

Previous Articles     Next Articles

Application of Momentum Factor DD-LMS Algorithm in High Speed Coherent Receiver

GONG Chuang1, LIU Zhiqiang1,2, LU Ye1, ZHOU Peng1, WU Kangkang1, LI Chuanqi1,3*   

  1. 1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. The No. 34 Research Institute of CETC, Guilin Guangxi 541004, China;
    3. College of Physics and Electronic, Nanning Normal University, Nanning Guangxi 530001, China
  • Received:2021-06-08 Revised:2021-07-10 Published:2022-05-31

Abstract: The chromatic dispersion in the optical fiber is the direct cause of the inter-symbol interference (ISI) of the transmission signal, and the signal degradation is particularly serious when the transmission environment fluctuates. Traditional adaptive blind equalization algorithms have slow convergence speed and large errors, which are not suitable for high-speed coherent receivers. In order to solve this problem, the momentum factor is introduced to improve the decision-directed least means square (DD-LMS) algorithm to optimize the effect of fiber channel dispersion. Theoretically, the momentum factor is derived and demonstrated on the convergence performance and error function of the blind equalization algorithm. At the same time, the momentum factor of different functions is explored on the optimization performance of the algorithm.A coherent optical transmission system with a single carrier transmission rate of 224 Gib/s is built on the OptiSystem optical simulation software. The results show that, compared with the traditional time domain equalizer (TDE ), adding this adaptive filter at the back end of the system can reduce the average bit error rate of the system by about 2.5 dB. When the optical signal-to-noise ratio is 15 dB and the transmission distance is 500-1 000 km, the error rate of the dispersion compensation module can be stabilized at about 10-2, and it has strong robustness in the dispersion channel.

Key words: coherent optical receiver, dispersion compensation, blind equalization, DD-LMS algorithm, momentum factor

CLC Number: 

  • TN929.1
[1] KUDO R, KOBAYASHI T, ISHIHARA K, et al. Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems[J]. Journal of Lightwave Technology, 2009, 27(16): 3721-3728. DOI: 10.1109/JLT.2009.2024091.
[2] 阮秀凯, 蒋啸, 李昌. 一种适用于高阶QAM系统Bussgang类盲均衡新方法[J]. 电子与信息学报, 2012, 34(8): 2018-2022.
[3] 钟昆, 杨怀栋. 超高速PM-QPSK相干光通信系统恒模算法解调性能分析[J]. 光通信技术, 2019, 43(4): 1-7.
[4] 吴晓杰. 高阶QAM信号解调并行均衡低复杂度算法研究与实现[D]. 成都: 电子科技大学, 2020.
[5] DONG Y, WANG L Q, ZHANG Z G, et al. Parallel and pipelined CMA for high-speed and real-time optical coherent receivers[C]// 2019 18th International Conference on Optical Communications and Networks (ICOCN). Piscataway, NJ: IEEE, 2019. DOI: 10.1109/ICOCN.2019.8934049.
[6] KAMRAN R, THAKER N B, ANGHAN M, et al. Demonstration of a polarization diversity based SH-QPSK system with CMA-DFE equalizer[C]// 2017 26th Wireless and Optical Communication Conference (WOCC). Piscataway, NJ: IEEE, 2017. DOI: 10.1109/WOCC.2017.7928980.
[7] 张天骐, 范聪聪, 葛宛营, 等. 基于ICA和特征提取的MIMO信号调制识别算法[J]. 电子与信息学报, 2020, 42(9): 2208-2215.
[8] KYONO T, OTSUKA Y, FUKUMOTO Y, et al. Computational-complexity comparison of artificial neural network and Volterra series transfer function for optical nonlinearity compensation with time-and frequency-domain dispersion equalization[C]// 2018 European Conference on Optical Communication (ECOC). Piscataway, NJ: IEEE, 2018. DOI: 10.1109/ECOC.2018.8535153.
[9] RANZINI S M, ROS F D, ZIBAR D. Joint low-complexity opto-electronic chromatic dispersion compensation for short-reach transmission[C]// 2019 IEEE Photonics Conference (IPC). Piscataway, NJ: IEEE, 2019. DOI: 10.1109/IPCon.2019.8908278.
[10] 李晓记, 杜卫海, 李燕龙, 等. 基于SVM的水下LED可见光通信信号检测方法[J]. 光通信技术, 2021, 45(5): 50-54. DOI: 10.13921/j.cnki.issn1002-5561.2021.05.011.
[11] 迟楠, 牛文清, 贾俊连, 等. 基于抗非线性SVM的几何整形可见光通信系统[J]. 应用科学学报, 2020, 38(4): 647-658.
[12] CHEN G Y, SUN L, XU K, et al. Machine learning of SVM classification utilizing complete binary tree structure for PAM-4/8 optical interconnection[C]// 2017 IEEE Optical Interconnects Conference (OI). Piscataway, NJ: IEEE, 2017: 47-48, DOI: 10.1109/OIC.2017.7965524.
[13] 吴曦. 基于深度学习的可见光通信系统中信道估计与信道非线性研究[D]. 北京: 北京邮电大学, 2020. DOI: 10.26969/d.cnki.gbydu.2020.002724.
[14] SAVORY S J. Digital filters for coherent optical receivers[J]. Optics Express, 2008, 16 (2): 804-817. DOI: 10.1364/OE.16.000804.
[15] KHAFAJI M, GUSTAT H, ELLINGER F, et al. General time-domain represention of chromatic dispersion in single-mode fibers[J]. IEEE Photonics Technology Letters, 2010, 22(5): 314-316. DOI: 10.1109/LPT.2009.2038355.
[16] ZHOU Z, TANG Z X. Quantitatively predicting third harmonic generation for Gaussian pulses propagating in Kerr nonlinear media[C]// 2017 4th International Conference on Information Science and Control Engineering (ICISCE). Piscataway, NJ: IEEE, 2017: 1608-1611. DOI: 10.1109/ICISCE.2017.335.
[17] 王瑜浩. 少模光纤传输系统的非线性补偿与再生技术研究[D]. 成都: 电子科技大学, 2020. DOI: 10.27005/d.cnki.gdzku.2020.002137.
[18] XU J, ZHENG Y, SUN X H. Analysis for transmission performance of ultra-long haul optical fiber link considering quintic nonlinear effect[C]// 2017 16th International Conference on Optical Communications and Networks (ICOCN). Piscataway, NJ: IEEE, 2017. DOI: 10.1109/ICOCN.2017.8121484.
[19] 梅艳, 张跃进, 展爱云. 基于FEC的LDPC编码在远距离光通信系统中的研究[J]. 光通信技术, 2012, 36(8): 32-34. DOI: 10.13921/j.cnki.issn1002-5561.2012.08.011.
[20] 叶文伟. 光通信系统中一种新颖FEC码的仿真分析[J]. 半导体光电, 2012, 33(4): 561-565. DOI: 10.16818/j.issn1001-5868.2012.04.027.
[21] 覃江毅. 前向纠错编码类型盲识别关键技术研究[D]. 长沙: 国防科技大学, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.000026.
[22] LIGA G, CHEN B, VAN DER HEIDE S, et al. 30% reach increase via low-complexity hybrid HD/SD FEC and improved 4D modulation[J]. IEEE Photonics Technology Letters, 2020, 32(13): 827-830. DOI: 10.1109/LPT.2020.2995636.
[1] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9-20.
[2] ZHANG Xiurong , LI Chuanqi , LU Ye , ZHANG Dongchuang , KONG Yibu , FU Xueqian , FAN Qingbin. A Novel Two-dimensional Code Design and Performance Analysisfor SAC-OCDMA System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .