Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (2): 27-35.doi: 10.16088/j.issn.1001-6600.2022031701

Previous Articles     Next Articles

Research Progress of IL-31 in Itch

LI Kangliang1, QIU Caixiong1, HE Shuang1, HUANG Chunhua2, WU Guanyi1*   

  1. 1. College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning Guangxi 530299, China;
    2. College of Pharmacology, Guangxi University of Chinese Medicine, Nanning Guangxi 530299, China
  • Received:2022-03-17 Revised:2022-06-03 Online:2023-03-25 Published:2023-04-25

Abstract: Itch is a normal symptom in many skin diseases such as atopic dermatitis, prurigo nodularis, psoriasis, and chronic urticaria. More and more data show that interleukin-31 (IL-31) plays an important role in itch. IL-31 is composed and released from CD4+ help T cell, mast cells, keratinocytes, macrophages, and dendritic cells. By activating interleukin-31 heterodimer receptors (IL-31 receptor A and tumor suppressor M receptor), itch related signals are generated. Although it has been found that IL-31 can transmit itch signals to the central nerve system directly or indirectly, mechanism of itch is not fully understood. This review summarizes the current knowledge on IL-31's gene, source, receptor, and the effect of IL-31 in pruritic diseases.

Key words: IL-31, itch, skin diseases, IL-31 receptor, keratinocytes, mast cells

CLC Number: 

  • R751
[1] DILLON S R, SPRECHER C, HAMMOND A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice[J]. Nature Immunology, 2004, 5(7): 752-760. DOI: 10.1038/ni1084.
[2] 窦侠,钟伟龙,吴瑕,等.IL-31及其受体在结节性痒疹中的表达[J].中国皮肤性病学杂志,2018,32(10):1134-1138. DOI: 10.13735/j.cjdv.1001-7089.201803041.
[3] DUCA E, SUR G, ARMAT I, et al. Correlation between interleukin 31 and clinical manifestations in children with atopic dermatitis: an observational study[J]. Allergologia et Immunopathologia, 2022, 50(1): 75-79. DOI: 10.15586/aei.v50i1.521.
[4] CORNELISSEN C, LÜSCHER-FIRZLAFF J, BARON J M, et al. Signaling by IL-31 and functional consequences[J]. European Journal of Cell Biology, 2012, 91(6/7): 552-566. DOI: 10.1016/j.ejcb.2011.07.006.
[5] BANG C H, SONG J Y, SONG Y M, et al. Production of IL-31 in CD45RO+CLA+H4R+ T cells in atopic dermatitis[J]. Journal of Clinical Medicine, 2021, 10(9): 1976. DOI: 10.3390/jcm10091976.
[6] CORNELISSEN C, BRANS R, CZAJA K, et al. Ultraviolet B radiation and reactive oxygen species modulate interleukin-31 expression in T lymphocytes, monocytes and dendritic cells[J]. The British Journal of Dermatology, 2011, 165(5): 966-975. DOI: 10.1111/j.1365-2133.2011.10487.x.
[7] HASHIMOTO T, SATOH T, YOKOZEKI H. Pruritus in ordinary scabies: IL-31 from macrophages induced by overexpression of thymic stromal lymphopoietin and periostin[J]. Allergy, 2019, 74(9): 1727-1737. DOI: 10.1111/all.13870.
[8] XU J J, ZANVIT P, HU L, et al. The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching[J]. Immunity, 2020, 53(2): 371-383.e5. DOI: 10.1016/j.immuni.2020.06.023.
[9] RAAP U, GEHRING M, KLEINER S, et al. Human basophils are a source of - and are differentially activated by - IL-31[J]. Clinical and Experimental Allergy, 2017, 47(4): 499-508. DOI: 10.1111/cea.12875.
[10] HASHIMOTO T, KURSEWICZ C D, FAYNE R A, et al. Pathophysiologic mechanisms of itch in bullous pemphigoid[J]. Journal of the American Academy of Dermatology, 2020, 83(1): 53-62. DOI: 10.1016/j.jaad.2019.07.060.
[11] FURUE M, FURUE M. Interleukin-31 and pruritic skin[J]. Journal of Clinical Medicine, 2021, 10(9): 1906. DOI: 10.3390/jcm10091906.
[12] PETRA A I, TSILIONI I, TARACANOVA A, et al. Interleukin 33 and interleukin 4 regulate interleukin 31 gene expression and secretion from human laboratory of allergic diseases 2 mast cells stimulated by substance P and/or immunoglobulin E[J]. Allergy and Asthma Proceedings, 2018, 39(2): 153-160. DOI: 10.2500/aap.2018.38.4105.
[13] DATSI A, STEINHOFF M, AHMAD F, et al. Interleukin-31: the “itchy” cytokine in inflammation and therapy[J]. Allergy, 2021, 76(10): 2982-2997. DOI: 10.1111/all.14791.
[14] DIVEU C, LAK-HAL A H L, FROGER J, et al. Predominant expression of the long isoform of GP130-like (GPL) receptor is required for interleukin-31 signaling[J]. European Cytokine Network, 2004, 15(4): 291-302.
[15] CHEUNG P F Y, WONG C K, HO A W Y, et al. Activation of human eosinophils and epidermal keratinocytes by Th2 cytokine IL-31: implication for the immunopathogenesis of atopic dermatitis[J]. International Immunology, 2010, 22(6): 453-467. DOI: 10.1093/intimm/dxq027.
[16] BACI I S, RUZICKA T. IL-31: a new key player in dermatology and beyond[J]. Journal of Allergy and Clinical Immunology, 2018, 141(3): 858-866. DOI: 10.1016/j.jaci.2017.10.045.
[17] EDUKULLA R, SINGH B, JEGGA A G, et al. Th2 cytokines augment IL-31/IL-31RA interactions via STAT6-dependent IL-31RA expression[J]. Journal of Biological Chemistry, 2015, 290(21): 13510-13520. DOI: 10.1074/jbc.M114.622126.
[18] IRIE H, KABASHIMA K. The interaction between the immune system and the peripheral sensory nerves in pruritus[J]. International Immunology, 2021, 33(12): 737-742. DOI: 10.1093/intimm/dxab076.
[19] HOREJS-HOECK J, SCHWARZ H, LAMPRECHT S, et al. Dendritic cells activated by IFN-γ/STAT1 express IL-31 receptor and release proinflammatory mediators upon IL-31 treatment[J]. Journal of Immunology, 2012, 188(11): 5319-5326. DOI: 10.4049/jimmunol.1101044.
[20] CEVIKBAS F, WANG X D, AKIYAMA T, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1[J]. Journal of Allergy and Clinical Immunology, 2014, 133(2): 448-460. DOI: 10.1016/j.jaci.2013.10.048.
[21] ARAI I, TSUJI M, TAKEDA H, et al. A single dose of interleukin-31 (IL-31) causes continuous itch-associated scratching behaviour in mice[J]. Experimental Dermatology, 2013, 22(10): 669-671. DOI: 10.1111/exd.12222.
[22] ARAI I, TSUJI M, MIYAGAWA K, et al. Repeated administration of IL-31 upregulates IL-31 receptor A (IL-31RA) in dorsal root ganglia and causes severe itch-associated scratching behaviour in mice[J]. Experimental Dermatology, 2015, 24(1): 75-78. DOI: 10.1111/exd.12587.
[23] GONZALES A J, FLECK T J, HUMPHREY W R, et al. IL-31-induced pruritus in dogs: a novel experimental model to evaluate anti-pruritic effects of canine therapeutics[J]. Veterinary Dermatology, 2016, 27(1): 34-e10. DOI: 10.1111/vde.12280.
[24] LEWIS K E, HOLDREN M S, MAURER M F, et al. Interleukin (IL) 31 induces in cynomolgus monkeys a rapid and intense itch response that can be inhibited by an IL-31 neutralizing antibody[J]. Journal of the European Academy of Dermatology and Venereology, 2017, 31(1): 142-150. DOI: 10.1111/jdv.13794.
[25] LARSEN E G, CHO T S, MCBRIDE M L, et al. Transmembrane protein TMEM184B is necessary for interleukin-31-induced itch[J]. Pain, 2022, 163(5): e642-e653. DOI: 10.1097/j.pain.0000000000002452.
[26] 唐宗湘,伍冠一.脊髓水平的痒觉神经环路以及信息传递研究进展[J].广西师范大学学报(自然科学版),2012,30(3):236-243.DOI: 10.16088/j.issn.1001-6600.2012.03.024.
[27] KUNIMURA K, FUKUI Y. The molecular basis for IL-31 production and IL-31-mediated itch transmission: from biology to drug development[J]. International Immunology, 2021, 33(12): 731-736. DOI: 10.1093/intimm/dxab065.
[28] SAKATA D, URUNO T, MATSUBARA K, et al. Selective role of neurokinin B in IL-31-induced itch response in mice[J]. Journal of Allergy and Clinical Immunology, 2019, 144(4): 1130-1133. DOI: 10.1016/j.jaci.2019.06.031.
[29] FELD M, GARCIA R, BUDDENKOTTE J, et al. The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves[J]. Journal of Allergy and Clinical Immunology, 2016, 138(2): 500-508. DOI: 10.1016/j.jaci.2016.02.020.
[30] TSUJI M, ARAI I, MIYAGAWA K, et al. Involvement of interleukin-31 receptor A in morphine-induced itching and antinociception in mice[J]. European Journal of Pain, 2019, 23(2): 378-388. DOI: 10.1002/ejp.1312.
[31] ANDOH T, LI S K, UTA D. Involvement of thromboxane A2 in interleukin-31-induced itch-associated response in mice[J]. Pharmacological Reports, 2018, 70(2): 251-257. DOI: 10.1016/j.pharep.2017.10.001.
[32] ANDOH T, HARADA A, KURAISHI Y. Involvement of leukotriene B4 released from keratinocytes in itch-associated response to intradermal interleukin-31 in mice[J]. Acta Dermato-Venereologica, 2017, 97(8): 922-927. DOI: 10.2340/00015555-2697.
[33] OZCEKER D, BULUT M, OZBAY A C, et al. Assessment of IL-31 levels and disease severity in children with atopic dermatitis[J]. Allergologia et Immunopathologia, 2018, 46(4): 322-325. DOI: 10.1016/j.aller.2017.10.005.
[34] LU J Y, WU K, ZENG Q H, et al. Serum interleukin-31 level and pruritus in atopic dermatitis: a Meta-analysis[J]. Journal of Central South University (Medical Science), 2018, 43(2): 124-130. DOI: 10.11817/j.issn.1672-7347.2018.02.003.
[35] BILSBOROUGH J, LEUNG D Y M, MAURER M, et al. IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis[J]. Journal of Allergy and Clinical Immunology, 2006, 117(2): 418-425. DOI: 10.1016/j.jaci.2005.10.046.
[36] NEIS M M, PETERS B, DREUW A, et al. Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis[J]. Journal of Allergy and Clinical Immunology, 2006, 118(4): 930-937. DOI: 10.1016/j.jaci.2006.07.015.
[37] NOBBE S, DZIUNYCZ P, MÜHLEISEN B, et al. IL-31 expression by inflammatory cells is preferentially elevated in atopic dermatitis[J]. Acta Dermato-Venereologica, 2012, 92(1): 24-28. DOI: 10.2340/00015555-1191.
[38] NATTKEMPER L A, TEY H L, VALDES-RODRIGUEZ R, et al. The genetics of chronic itch: gene expression in the skin of patients with atopic dermatitis and psoriasis with severe itch[J]. Journal of Investigative Dermatology, 2018, 138(6): 1311-1317. DOI: 10.1016/j.jid.2017.12.029.
[39] HAMANN C R, THYSSEN J P. Monoclonal antibodies against interleukin 13 and interleukin 31RA in development for atopic dermatitis[J]. Journal of the American Academy of Dermatology, 2018, 78(3 Suppl 1): S37-S42. DOI: 10.1016/j.jaad.2017.12.018.
[40] TAKAOKA A, ARAI I, SUGIMOTO M, et al. Involvement of IL-31 on scratching behavior in NC/Nga mice with atopic-like dermatitis[J]. Experimental Dermatology, 2006, 15(3): 161-167. DOI: 10.1111/j.1600-0625.2006.00405.x.
[41] GRIMSTAD O, SAWANOBORI Y, VESTERGAARD C, et al. Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: a model of atopic dermatitis[J]. Experimental Dermatology, 2009, 18(1): 35-43. DOI: 10.1111/j.1600-0625.2008.00766.x.
[42] CHAUDHARY S K, SINGH S K, KUMARI P, et al. Alterations in circulating concentrations of IL-17, IL-31 and total IgE in dogs with atopic dermatitis[J]. Veterinary Dermatology, 2019, 30(5): 383-e114. DOI: 10.1111/vde.12762.
[43] YAMAMURA K, URUNO T, SHIRAISHI A, et al. The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction[J]. Nature Communications, 2017, 8(1): 13946. DOI: 10.1038/ncomms13946.
[44] MENG J H, MORIYAMA M, FELD M, et al. New mechanism underlying IL-31-induced atopic dermatitis[J]. Journal of Allergy and Clinical Immunology, 2018, 141(5): 1677-1689. DOI: 10.1016/j.jaci.2017.12.1002.
[45] MENG J H, LI Y Q, FISCHER M J M, et al. Th2 modulation of transient receptor potential channels: an unmet therapeutic intervention for atopic dermatitis[J]. Frontiers in Immunology, 2021, 12: 696784. DOI: 10.3389/fimmu.2021.696784.
[46] AL-KHENAIZAN S, AL-BEROUTI B. Flagellate pigmentation: a unique adverse effect of bleomycin therapy[J]. European Journal of Dermatology, 2011, 21(1): 146. DOI: 10.1684/ejd.2011.1213.
[47] SONKOLY E, MULLER A, LAUERMA A I, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation[J]. Journal of Allergy and Clinical Immunology, 2006, 117(2): 411-417. DOI: 10.1016/j.jaci.2005.10.033.
[48] HASHIMOTO T, NATTKEMPER L A, KIM H S, et al. Itch intensity in prurigo nodularis is closely related to dermal interleukin-31, oncostatin M, IL-31 receptor alpha and oncostatin M receptor beta[J]. Experimental Dermatology, 2021, 30(6): 804-810. DOI: 10.1111/exd.14279.
[49] ZHONG W L, WU X, ZHANG W, et al. Aberrant expression of histamine-independent pruritogenic mediators in keratinocytes may be involved in the pathogenesis of prurigo nodularis[J]. Acta Dermato-Venereologica, 2019, 99(6): 579-586. DOI: 10.2340/00015555-3150.
[50] TSOI L C, HACINI-RACHINEL F, FOGEL P, et al. Transcriptomic characterization of prurigo nodularis and the therapeutic response to nemolizumab[J]. Journal of Allergy and Clinical Immunology, 2022, 149(4): 1329-1339. DOI: 10.1016/j.jaci.2021.10.004.
[51] BELMESK L, MUNTYANU A, CANTIN E, et al. Prominent role of type 2 immunity in skin diseases: beyond atopic dermatitis[J]. Journal of Cutaneous Medicine and Surgery, 2022, 26(1): 33-49. DOI: 10.1177/12034754211027858.
[52] LIN W, ZHOU Q Y, LIU C B, et al. Increased plasma IL-17, IL-31, and IL-33 levels in chronic spontaneous urticaria[J]. Scientific Reports, 2017, 7(1): 17797. DOI: 10.1038/s41598-017-18187-z.
[53] 段娜,郑瑞,周瑞艳.慢性自发性荨麻疹患者血清中IL-31水平与瘙痒程度的相关性[J].中国麻风皮肤病杂志,2017,33(10):592-595.
[54] GARCOVICH S, MAURELLI M, GISONDI P, et al. Pruritus as a distinctive feature of type 2 inflammation[J]. Vaccines, 2021, 9(3): 303. DOI: 10.3390/vaccines9030303.
[55] PATRA V, STROBL J, GRUBER-WACKERNAGEL A, et al. CD11b+ cells markedly express the itch cytokine interleukin-31 in polymorphic light eruption[J]. The British Journal of Dermatology, 2019, 181(5): 1079-1081. DOI: 10.1111/bjd.18092.
[56] KADURINA M, KAZANDJIEVA J, BOCHEVA G. Immunopathogenesis and management of polymorphic light eruption[J]. Dermatologic Therapy, 2021, 34(6): e15167. DOI: 10.1111/dth.15167.
[57] PURZYCKA-BOHDAN D, GLEÑ J, ZABŁOTNA M, et al. Significance of interleukin-31 (IL-31) gene polymorphisms and IL-31 serum level in psoriasis in correlation with pruritus[J]. Postepy Dermatologii i Alergologii, 2021, 38(4): 657-664. DOI: 10.5114/ada.2021.108926.
[58] NIYONSABA F, USHIO H, HARA M, et al. Antimicrobial peptides human β-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells[J]. Journal of Immunology, 2010, 184(7): 3526-3534. DOI: 10.4049/jimmunol.0900712.
[59] NARBUTT J, OLEJNICZAK I, SOBOLEWSKA-SZTYCHNY D, et al. Narrow band ultraviolet B irradiations cause alteration in interleukin-31 serum level in psoriatic patients[J]. Archives for Dermatological Research, 2013, 305(3): 191-195. DOI: 10.1007/s00403-012-1293-6.
[60] NATTKEMPER L A, MARTINEZ-ESCALA M E, GELMAN A B, et al. Cutaneous T-cell lymphoma and pruritus: the expression of IL-31 and its receptors in the skin[J]. Acta Dermato-Venereologica, 2016, 96(7): 894-898. DOI: 10.2340/00015555-2417.
[61] ABREU M, MIRANDA M, CASTRO M, et al. IL-31 and IL-8 in cutaneous T-cell lymphoma: looking for their role in itch[J]. Advances in Hematology, 2021, 2021: 5582581. DOI: 10.1155/2021/5582581.
[62] DI SALVO E, ALLEGRA A, CASCIARO M, et al. IL-31, itch and hematological malignancies[J]. Clinical and Molecular Allergy, 2021, 19(1): 8. DOI: 10.1186/s12948-021-00148-7.
[63] RÜDRICH U, GEHRING M, PAPAKONSTANTINOU E, et al. Eosinophils are a major source of interleukin-31 in bullous pemphigoid[J]. Acta Dermato-Venereologica, 2018, 98(8): 766-771. DOI: 10.2340/00015555-2951.
[64] LANGE M, GLEŃ J, ZABŁOTNA M, et al. Interleukin-31 polymorphisms and serum IL-31 level in patients with mastocytosis: correlation with clinical presentation and pruritus[J]. Acta Dermato-Venereologica, 2017, 97(1): 47-53. DOI: 10.2340/00015555-2474.
[65] HARTMANN K, WAGNER N, RABENHORST A, et al. Serum IL-31 levels are increased in a subset of patients with mastocytosis and correlate with disease severity in adult patients[J]. Journal of Allergy and Clinical Immunology, 2013, 132(1): 232-235. DOI: 10.1016/j.jaci.2012.11.008.
[66] KIM H J, ZEIDI M, BONCIANI D, et al. Itch in dermatomyositis: the role of increased skin interleukin-31[J]. The British Journal of Dermatology, 2018, 179(3): 669-678. DOI: 10.1111/bjd.16498.
[67] HASHIMOTO T, KURSEWICZ C D, FAYNE R A, et al. Mechanisms of itch in stasis dermatitis: significant role of IL-31 from macrophages[J]. Journal of Investigative Dermatology, 2020, 140(4): 850-859. DOI: 10.1016/j.jid.2019.09.012.
[68] KABASHIMA K, IRIE H. Interleukin-31 as a clinical target for pruritus treatment[J]. Frontiers in Medicine, 2021, 8: 638325. DOI: 10.3389/fmed.2021.638325.
[1] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24-35.
[2] JIANG Pinqun, GU Shen, SONG Shuxiang, CEN Mingcan. Harmonic Analysis and Anti-aliasing Research of N-path Band-stop Filter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 81-89.
[3] WANG Guoping, ZHU Longji. Interleaved Parallel Symmetric Boost Converter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 11-20.
[4] LI Jialiang, JIANG Pinqun, XIA Haiying. An Image Stitching Method Based on Grid Warping and Cosine Function Weight [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 42-53.
[5] HUANG Zhi, LIANG Qiu-ping, SU Cheng-yuan, WU Chang-qing, CHEN Meng-lin. Hydrolysis to Kitchen Waste with Multiple Enzymes [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 111-116.
[6] DENG Ye-cheng, LI Rui-yu, YANG Lin-lin, ZHONG Hui, ZHOU Qiu-yan, QING Zhen. Insecticidal Activities and Chemical Constituents of Essential Oils from Alien Invasive Plants Solidago canadensis and Wedelia trilobata [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 122-129.
[7] HU Qin-chun, HE Yi-gang, HE Jing. Time-domain Implementation of Gaussian-like Wavelet Transform Based on Switched Current Circuits [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 18-22.
[8] TANG Zong-xiang, WU Guan-yi. Progress in Neuronal Circuits and Transmission of Itch in the Spinal Cord [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 236-243.
[9] ZHAO Zhi-chang, HU Fu-chu, HU Gui-bing, WANG Hui-cong, YANG Zhuan-ying, SU Chun-lan, LI Jia-qiang. Cloning Glucose-flavonoid 3-o-glucosyltransferase (UFGT) from Litchi and Expression in Escherichia coli [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 104-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Zhengchun. Research Progress of Complementary Sequences[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 1 -16 .
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1 -18 .
[3] YANG Shenglong, MU Qingchuang, ZHANG Zhihua, LIU Kui. Technical Progress in Recovery and Utilization of Spent Lithium-ion Batteries[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 19 -26 .
[4] LU Xumeng, NAN Xinyuan, XIA Sibo. Trajectory Tracking Control Based on Model-Free Coordinate Compensation Integral Sliding Mode Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 36 -48 .
[5] ZHANG Weijian, BING Qichun, SHEN Fuxin, HU Yanran, GAO Peng. Travel Time Estimation Method of Urban Expressway Section[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 49 -57 .
[6] YANG Xiu, WEI Duqu. Chaos Tracking Control of Permanent Magnet Synchronous Motor Based on Single State Variable[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 58 -66 .
[7] ZHAO Yuan, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, CAI Chaobo, JIANG Pinqun. Design of a Novel Current-Mirror Operational Transconductance Amplifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 67 -75 .
[8] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76 -85 .
[9] ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86 -97 .
[10] YANG Xiufeng, FAN Jianghua. Connectedness of the Strong Efficient Solution Set for Vector Equilibrium Problems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 98 -105 .