Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (2): 19-26.doi: 10.16088/j.issn.1001-6600.2022042205

Previous Articles     Next Articles

Technical Progress in Recovery and Utilization of Spent Lithium-ion Batteries

YANG Shenglong1,2, MU Qingchuang1,2, ZHANG Zhihua1,2, LIU Kui1,2*   

  1. 1. Guangxi Key Laboratory of Low-Carbon Energy Materials (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2022-04-22 Revised:2022-08-15 Online:2023-03-25 Published:2023-04-25

Abstract: The widely-use of lithium-ion batteries leads to the rapid growth of spent lithium-ion batteries. Recycling of spent lithium-ion batteries can relieve the dual pressure of resource shortage and environmental pollution. This paper summarizes the technologies of recycling of spent lithium-ion batteries from the aspects of pretreatment of spent lithium-ion batteries, recovery of metal elements, and regeneration of positive and negative active materials. The future development of recycling technology is prospected.

Key words: spent lithium-ion batteries, recycling, cathode material, anode material, regeneration

CLC Number: 

  • TF11
[1] NAYAKA G P, PAI K V, MANJANNA J, et al. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries[J]. Waste Management, 2016, 51: 234-238.DOI: 10.1016/j.wasman.2015.12.008.
[2] HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575: 75-86.DOI: 10.1038/s41586-019-1682-5.
[3] GAO W F, LIU C M, CAO H B, et al. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries[J]. Waste Management, 2018, 75: 477-485.DOI: 10.1016/j.wasman.2018.02.023.
[4] QU X, CAI M Y, ZHANG B L, et al. A vapor thermal approach to selective recycling of spent lithium-ion batteries[J]. Green Chemistry, 2021, 23: 8673-8684.DOI: 10.1039/D1GC03036A.
[5] YU J D, HE Y Q, LI H, et al. Effect of the secondary product of semi-solid phase Fenton on the flotability of electrode material from spent lithium-ion battery[J]. Powder Technology, 2017, 315: 139-146.DOI: 10.1016/j.powtec.2017.03.050.
[6] ASSEFI M, MAROUFI S, YAMAUCHI Y, et al. Pyrometallurgical recycling of Li-ion, Ni-Cd and Ni-MH batteries: a minireview[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 24: 26-31.DOI: 10.1016/j.cogsc.2020.01.005.
[7] MA Y Y, TANG J J, WANALDI R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching[J]. Journal of Hazardous Materials, 2021, 402: 123491.DOI: 10.1016/j.jhazmat.2020.123491.
[8] LÜ W G, WANG Z H, CAO H B, et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 1504-1521.DOI: 10.1021/acssuschemeng.7b03811.
[9] ZENG X L, LI J H. Implications for the carrying capacity of lithium reserve in China[J]. Resources Conservation and Recycling, 2013, 80: 58-63.DOI: 10.1016/j.resconrec.2013.08.003.
[10] ZENG X L, LI J H. On the sustainability of cobalt utilization in China[J]. Resources, Conservation and Recycling, 2015, 104: 12-18.DOI: 10.1016/j.resconrec.2015.09.014.
[11] ZENG X L, LI J H, SHEN B Y. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid[J]. Journal of Hazardous Materials, 2015, 295: 112-118.DOI: 10.1016/j.jhazmat.2015.02.064.
[12] 钟雪虎, 焦芬, 刘桐, 等. 废旧锂离子电池回收工艺概述[J]. 电池, 2018, 48(1): 63-67.DOI: 10.19535/j.1001-1579.2018.01.017.
[13] FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects[J]. Chemical Reviews. 2020, 120(14): 7020-7063.DOI: 10.1021/acs.chemrev.9b00535.
[14] WANG Y Q, AN N, WEN L, et al. Recent progress on the recycling technology of Li-ion batteries[J]. Journal of Energy Chemistry, 2021,55(4): 391-419.DOI: 10.1016/j.jechem.2020.05.008.
[15] LI L, ZHANG X X, LI M, et al. The recycling of spent lithium-ion batteries: a review of current processes and technologies[J]. Electrochemical Energy Reviews, 2018,1(4): 461-482.DOI: 10.1007/s41918-018-0012-1.
[16] SHI Y, ZHANG M H, MENG Y S, et al. Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0<x<1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes[J].Advanced Energy Materials, 2019, 9: 1900454.DOI: 10.1002/aenm.201900454.
[17] LAI Y M, ZHU X Q, LI J, et al. Efficient recovery of valuable metals from cathode materials of spent LiCoO2 batteries via co-pyrolysis with cheap carbonaceous materials[J]. Waste Management, 2022, 148: 12-21.DOI: 10.1016/j.wasman.2022.05.017.
[18] LI J, LAI Y M, ZHU X Q, et al. Pyrolysis kinetics and reaction mechanism of the electrode materials during the spent LiCoO2 batteries recovery process[J]. Journal of Hazardous Materials, 2020, 398: 122955.DOI: 10.1016/j.jhazmat.2020.122955.
[19] 潘英俊.以磷酸铁锂为正极材料的废旧锂离子电池回收及再利用[D]. 哈尔滨: 哈尔滨工业大学,2012.
[20] 王泽峰. 废锂电池中钴的回收技术研究[D]. 北京: 清华大学, 2008.
[21] 严红. 废旧锂离子电池电解液的回收方法: CN201310290286.7[P]. 2013-07-10.
[22] 金泳勋, 松田光明, 董晓辉, 等. 用浮选法从废锂离子电池中回收锂钴氧化物[J]. 国外金属矿选矿, 2003, 40(7): 32-37.
[23] YAMAJI Y, DODBIBA G, MATSUO S. A novel flow sheet for processing of used lithium-ion batteries for recycling[J]. Resources Processing, 2011, 58(1): 9-13.DOI: 10.4144/rpsj.58.9.
[24] HE Y Q, ZHANG T, WANG F F, et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation[J]. Journal of Cleaner Production, 2017, 143: 319-325.DOI: 10.1016/j.jclepro.2016.12.106.
[25] HAGELÜKEN C. Recycling of electronic scrap at Umicore's integrated metals smelter and refinery[J]. World of Metallurgy-Erzmetall,2006,59(3):152-161.
[26] ZHANG P W, YOKOYAMA T, ITABASHI O, et al. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries[J]. Hydrometallurgy, 1998, 47(2/3): 259-271.DOI: 10.1016/S0304-386X(97)00050-9.
[27] LI L, GE J, WU F, et al. Recovery of cobalt and lithium from spent lithium-ion batteries using organic citric acid as leachant[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 288-293.DOI: 10.1016/j.jhazmat.2009.11.026.
[28] 杨海波, 梁辉, 黄继承, 等.从废旧锂离子电池中回收制备LiCoO2的结构与性能研究[J].稀有金属材料与工程,2006,35(5): 836-840.
[29] 刘帆, 周有池, 王林生, 等. 从废旧锂离子电池提钴后液中回收锂[J]. 无机盐工业, 2017,49(2): 50-53.
[30] 张阳, 满瑞林, 王辉, 等. 综合回收废旧锂电池中有价金属的研究[J]. 稀有金属, 2009, 33(6): 931-935.DOI: 10.3969/j.issn.0258-7076.2009.06.032.
[31] 何汉兵, 秦毅红. 有机溶剂分离废旧锂离子电池[J]. 电源技术, 2006, 30(5): 380-382,390.
[32] NAYL A A, HAMED M M, RIZK S E. Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 119-125.DOI: 10.1016/j.jtice.2015.04.006.
[33] SATTAR R, ILYAS S, BHATTI H N, et al.Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries[J]. Separation and Purification Technology, 2019, 209: 725-733.DOI: 10.1016/j.seppur.2018.09.019.
[34] HU J T, ZHANG J L, LI H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 192-199.DOI: 10.1016/j.jpowsour.2017.03.093.
[35] INNOCENZI V, IPPOLITO N M, MICHELIS I, et al. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries[J]. Journal of Power Sources, 2017, 362: 202-218. DOI: 10.1016/j.jpowsour.2017.07.034.
[36] 徐筱群, 满瑞林, 张建, 等. 电解剥离-生物质酸浸回收废旧锂电池[J]. 中国有色金属学报, 2014, 24(10): 2576-2581.DOI: 10.19476/j.ysxb.1004.0609.2014.10.020.
[37] LI L, CHEN R J, SUN F, et al. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process[J]. Hydrometallurgy, 2011, 108(3/4): 220-225.
[38] MYOUNG J, JUNG Y, LEE J, et al. Cobalt oxide preparation from waste LiCoO2 by electrochemical-hydrothermal method[J]. Journal of Power Sources, 2002, 112(2): 639-642.DOI: 10.1016/S0378-7753(02)00459-7.
[39] LÜ W G, RUAN D S, ZHENG X H, et al. One-step recovery of valuable metals from spent lithium-ion batteries and synthesis of persulfate through paired electrolysis[J]. Chemical Engineering Journal, 2021, 421: 129908.DOI: 10.1016/j.cej.2021.129908.
[40] LIU K, YANG S L, LAI F Y, et al. Innovative electrochemical strategy to recovery of cathode and efficient lithium leaching from spent lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5): 4767-4776.DOI: 10.1021/acsaem.0c00395.
[41] 王晓峰, 孔祥华, 赵增营. 锂离子电池中贵重金属的回收[J]. 电池, 2001, 31(1): 14-15.
[42] 冯佳, 章骅, 邵立明, 等. 废旧锂离子电池中钴的离子交换法回收[J]. 环境卫生工程, 2008, 16(6): 1-3.
[43] MISHRA D, KIM D J, RALPH D E, et al. Bioleaching of metals from spent lithium-ion secondary batteries using Acidithiobacillus ferrooxidans[J]. Waste Management, 2008, 28: 333-338.DOI: 10.1016/j.wasman.2007.01.010.
[44] 李长东, 余海军, 陈清后. 从废旧锂电池中回收制备三元正极材料的研究[J]. 资源再生, 2011(8): 62-65.
[45] 胥亚楠, 汪晓峰, 李佳, 等. 低温热处理法回收的钴酸锂应用于碱性二次电池的性能研究[J]. 南开大学学报(自然科学版), 2016, 49(3): 7-11.
[46] 刘云建, 胡启阳, 李新海, 等.废旧锂离子电池中LiCoO2的回收合成及电化学行为研究[J]. 中国有色金属学会会刊, 2007, 17(A2): 902-906.
[47] GUO Y, LI F, ZHU H C, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Management, 2016, 51: 227-233.DOI: 10.1016/j.wasman.2015.11.036.
[48] CHEN X F, ZHU Y Z, PENG W C, et al. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: a green and high yield route to high-quality graphene preparation[J]. Journal of Materials Chemistry A, 2017, 5 (12): 5880-5893.DOI: 10.1039/C7TA00459A.
[49] ZHANG W X, LIU Z P, XIA J, et al. Preparing graphene from anode graphite of spent lithium-ion batteries[J]. Frontiers of Environmental Science & Engineering, 2017, 11(5): 6-12.DOI: 10.1007/s11783-017-0993-8.
[50] ZHAO L L, LIU X Y, WAN C Y, et al. Soluble graphene nanosheets from recycled graphite of spent lithium ion batteries[J]. Journal of Materials Engineering and Performance, 2018, 27(2): 875-880.DOI: 10.1007/s11665-018-3156-6.
[51] NATARAJAN S, RAO EDE S, BAJAJ H C, et al. Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries(LIBs) graphite and its application in supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543: 98-108.DOI: 10.1016/j.colsurfa.2018.01.054.
[52] CAO Z Q, ZHENG X H, CAO H B, et al. Efficient reuse of anode scrap from lithium-ion batteries as cathode for pollutant degradation in electro-Fenton process: role of different recovery processes[J]. Chemical Engineering Journal, 2018, 337: 256-265.DOI: 10.1016/j.cej.2017.12.104.
[53] NATARAJAN S, BAJAJ H C. Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: equilibrium, kinetics and mechanism[J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 4631-4643.DOI: 10.1016/j.jece.2016.10.024.
[54] MA Z, ZHUANG Y C, DENG Y M, et al. From spent graphite to amorphous sp2+sp3 carbon-coated sp2graphite for high-performance lithium ion batteries[J]. Journal of Power Sources, 2018, 376: 91-99.DOI: 10.1016/j.jpowsour.2017.11.038.
[1] LI Fushao, XU Yingxian, WU Qingqing, DENG Mingsen. Synthesis of Li2FeSiO4/C by Solid-State Reaction and Its Lithium Intercalation/de-Intercalation Property [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 154-162.
[2] LU Qun, SHI Jun-hui, ZENG Xiao-kang, ZHOU Kai, LEIAn-ping, ZAN Qi-jie. Primary Study on Sprout Regeneration of Mangrove after Logging in Futian,Shenzhen Bay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 107-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Zhengchun. Research Progress of Complementary Sequences[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 1 -16 .
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1 -18 .
[3] LI Kangliang, QIU Caixiong, HE Shuang, HUANG Chunhua, WU Guanyi. Research Progress of IL-31 in Itch[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 27 -35 .
[4] LU Xumeng, NAN Xinyuan, XIA Sibo. Trajectory Tracking Control Based on Model-Free Coordinate Compensation Integral Sliding Mode Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 36 -48 .
[5] ZHANG Weijian, BING Qichun, SHEN Fuxin, HU Yanran, GAO Peng. Travel Time Estimation Method of Urban Expressway Section[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 49 -57 .
[6] YANG Xiu, WEI Duqu. Chaos Tracking Control of Permanent Magnet Synchronous Motor Based on Single State Variable[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 58 -66 .
[7] ZHAO Yuan, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, CAI Chaobo, JIANG Pinqun. Design of a Novel Current-Mirror Operational Transconductance Amplifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 67 -75 .
[8] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76 -85 .
[9] ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86 -97 .
[10] YANG Xiufeng, FAN Jianghua. Connectedness of the Strong Efficient Solution Set for Vector Equilibrium Problems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 98 -105 .