Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (1): 38-47.doi: 10.16088/j.issn.1001-6600.2022022802

Previous Articles     Next Articles

Two-Tier Optimal Scheduling of Household Energy Based on Demand Response

WANG Hui*, FANG Hang, JIN Zirong, LI Xuyang   

  1. School of Electrical and New Energy, China Three Gorges University, Yichang Hubei 443002, China
  • Received:2022-02-28 Revised:2022-03-31 Online:2023-01-25 Published:2023-03-07

Abstract: With the improvement of people’s living standards, the household power load is also gradually increasing. Aiming at reducing household power expenditure, and based on the demand responseandand the environment of time phased pricing, a two-tier optimization strategy is adopted.Firstly, the upper layer of the strategy is the classified dispatching of household electrical equipment. Through the classified adjustment of household equipment, the schedulable load can be adjusted from the time period of high electricity price to the normal and valley periods of low electricity price, so as to greatly reduce the power consumption expenditure of household users; Secondly, the lower layer adjusts the output period of photovoltaic power generation equipment and energy storage equipment, and makes rational and efficient use of photovoltaic energy through the cooperation of energy storage equipment and photovoltaic equipment. Finally, taking a typical household load configuration as an example, the improved second-order oscillatory particle swarm optimization algorithm is used to analyze different scenarios such as power consumption period optimization, power consumption period and photovoltaic optimization, and verify the effectiveness of the two-tier optimal scheduling used in this paper.

Key words: lower electricity bills, two-tier optimization, time of use tariff, improved second order oscillatory particle swarm optimization

CLC Number: 

  • TM73
[1] 张华一,文福拴, 张璨,等. 计及舒适度的家庭能源中心运行优化模型[J]. 电力系统自动化,2016,40(20):32-39.
[2]李中伟,张啸,武东升,等. 家庭能量管理系统多目标能量调度优化策略[J]. 自动化仪表,2019,40(4):46-51.
[3]王珑, 王进,龚晓琴,等. 基于用户满意度的家庭能量管理系统协调优化调度[J]. 电力学报,2019,34(2):101-108,174.
[4]鲍毅,楼凤丹, 王万良. 需求侧管理下智能家庭用电多目标优化控制[J]. 智能系统学报, 2018, 13(1): 125-130.
[5]王守相,孙智卿,刘喆.面向智能用电的家庭能量协同调度策略[J]. 电力系统自动化, 2015, 39(17): 108-113.
[6] PRUDHVIRAJ D, KIRAN P B S,PINDORIYA N M.Stochastic Energy management of microgrid with nodal pricing[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(1): 102-110.
[7] LIU N,WANG J,WANG L F.Distributed energy management for interconnected operation of combined heat and power-based microgrids with demand response[J].Journal of Modern Power Systems and Clean Energy,2017,5(3):478-488.
[8]周磊,李扬.分时电价环境下基于家居能量管理系统的家居负荷建模优化运行[J].电网技术,2015,39(2):367-374.
[9]万庆祝,陈娅兰,边媛. 基于实时电价的家庭能量管理系统最优调度研究[J]. 计算机应用研究,2017,34(9):2610-2613,2628.
[10]郝文斌,李银奇. 不同电价机制下含光伏发电的家庭负荷调度经济性研究[J].电力系统保护与控制,2017,45(17):34-42.
[11]卢美玲,张庚,刘松,等. 面向能源互联网的家庭光伏发电系统经济效益优化调度模型[J]. 电力系统及其自动化学报,2016,28(S1):141-146.
[12]张彦,张涛,刘亚杰,等. 基于模型预测控制的家庭能源局域网最优能量管理研究[J]. 中国电机工程学报,2015,35(14): 3656-3666.
[13]张良杰. 电力系统柔性负荷的建模与控制策略研究[D]. 南京:东南大学,2016.
[14]仲志强,成海生,蔡华,等. 基于分时电价和需求响应的家庭微电网系统协同控制策略及其实现[J]. 现代电力,2021,38(1): 69-78.
[15]刘伟,王俊,龚成生,等. 基于激励机制的家庭能量系统优化策略研究[J]. 吉林大学学报(信息科学版),2021, 39(5): 525-530.
[16]唐程辉, 张凡, 梁才, 等. 考虑电池损耗和分布式可再生能源的储能调度[J]. 智慧电力, 2018, 46(12): 1-6.
[17]吴峰, 张涵. 用户光伏发电储能优化配置研究[J]. 智慧电力, 2018, 46(7): 1-6.
[18]伍惠铖, 王淳, 左远龙,等. 基于分时电价和蓄电池实时控制策略的家庭能量系统优化[J]. 电力系统保护与控制, 2019, 47(19): 23-30.
[19]胡孝楠, 刘淼泉. 家庭微电网系统能量优化[J]. 工业控制计算机, 2017,30(3): 132-133,135.
[20]刘旭. 基于需求侧管理的家庭能源优化控制的研究[D]. 秦皇岛:燕山大学,2017.
[21]蒋丽,叶润舟, 梁昌勇,等. 改进的二阶振荡粒子群算法[J].计算机工程与应用,2019, 55(9): 130-138,167.
[1] SU Shiwei, HAO Yitong, SONG Yujiao, ZHANG Lei, ZHI Li, HAO Yifan. Optimal Dispatch of Park Integrated Energy System Including Wind Power-Hydrogen Energy-P2G [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 48-57.
[2] WANG Yifan, WANG Hui, LI Xuyang, FANG Hang, WANG Baoquan, JIN Zirong. Survey of Capacity Allocation of Microgrid Hybrid Energy Storage System Based on Hydrogen Energy Storage [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 18-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHENG Wei,WEN Guoqiu,HE Wei,HU Rongyao,ZHAO Shuzhi. Low-rank Unsupervised Feature Selection Based on Self-representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 61 -69 .
[2] LIANG Xiaoping, LUO Xiaoshu. The Adaptive Wiener Filtering Deblurring Based on the Genetic Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 17 -23 .
[3] LIANG Shi-chu, TIAN Hua-li, TIAN Feng, XIA Yi, QIN Ying-ying. Wetland Vegetation Types and Their Distribution Characteristics in Lijiang River[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 115 -119 .
[4] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LIU Jingjie, CHU Wuying, ZHU Xin, SUN Yue, XU Yilan, XIE Yandong, BIN Shiyu, ZHANG Jianshe. Embryonic Development Characteristics and Rhythmic Expression Analysis of RORα Gene under Starvation in Siniperca chuatsi[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 190 -197 .
[7] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[8] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[9] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[10] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .