Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (5): 100-109.doi: 10.16088/j.issn.1001-6600.2020071301

Previous Articles     Next Articles

Design of Intelligent Monitoring System for Photovoltaic Greenhouse Based on LPWAN Internet of Things

HAI Tao*, LI Nana, ZHOU Wenjie, CHEN Juan, SONG Min   

  1. College of Electrical Engineering, Guangxi University, Nanning Guangxi 530004, China
  • Received:2020-07-13 Revised:2020-08-21 Online:2021-09-25 Published:2021-10-19

Abstract: In view of the limitations of high energy consumption, difficulty in monitoring and low level of management automation in large-scale greenhouses, the intelligent monitoring system of greenhouse integrating photovoltaic power generation, Low power Wide Area Internet of Things (LPWAN) and cloud platform technology has been designed. According to the climate characteristics of southern Guangxi and the growth characteristics of nightshade vegetables, the light intensity and temperature of the two photovoltaic arrangements in the greenhouse were analyzed by ECOTECT, and it was concluded that the lighting and heat dissipation of the chessboard photovoltaic greenhouse were more suitable for its growth. The greenhouse environmental parameters are collected and transmitted by the LoRa and NB-IoT of the lower computer using its unique advantages in the self-organized star network. Remote monitoring and intelligent supervision are realized on PC and mobile terminal through B/S structure, RBF-PID intelligent control strategy and cloud platform technology. The application shows that the system has a packet loss rate of no more than 3.4% at a communication distance of 1.5 km in a complex environment, and its communication success rate of more than 96%. And it can maintain various environmental parameters within the optimal production threshold for a long time, which helps to improve the output and quality of nightshade vegetables, and also provides a new idea for the intelligent monitoring system of photovoltaic greenhouses.

Key words: wireless sensor network, PV, LPWAN, LoRa, NB-IoT, remote monitoring

CLC Number: 

  • TP227.2
[1] 蒋卫杰,邓杰,余宏军. 设施园艺发展概况、存在问题与产业发展建议[J]. 中国农业科学,2015,48(17):3515-3523.
[2] 张雪花,张武,杨旭,等. 农业温室环境控制方法研究综述[J]. 控制工程,2017,24(1):8-15.
[3] HAGAONE J G,JAKHETE M D. Survey on android based live monitoring system of green house parameter[J]. International Journal of Science and Research(IJSR),2015,4(12):1353-1355.
[4] 廖建尚. 基于物联网的温室大棚环境监控系统设计方法[J]. 农业工程学报,2016,32(11):233-243.
[5] 李瑾,冯献,郭美荣,等. “互联网+”现代农业发展模式的国际比较与借鉴[J]. 农业现代化研究,2018,39(2):194-202.
[6] 王健,陈兰生,赖其涛,等. 大数据背景下的智能化农业设施系统设计[J]. 中国农机化学报,2016,37(11):180-184.
[7] SHADRIN D, MENSHCHIKOV A, SOMOV A, et al. Enabling precision agriculture through embedded sensing with artificial intelligence[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(7):4103-4113.
[8] 杜尚丰,何耀枫,梁美惠,等. 物联网温室环境调控系统[J]. 农业机械学报,2017,48(增刊):296-301.
[9] CHEN J Y, YANG A. Intelligent agriculture and its key technologies based on internet of things architecture[J]. IEEE Access, 2019,7:77134-77141.
[10] HERRERA D, TOSETTI S, CARELLI R. Dynamic modeling and identification of an agriculture autonomous vehicle[J]. IEEE Latin America Transactions,2016,14(6):2631-2637.
[11] 侯旭朝. 温室无线网络设计及其移动终端开发[D]. 保定:河北农业大学,2019.
[12] 罗强,胡三根,臧晓冬,等. 基于ZigBee技术的温室环境因子远程监控系统设计[J]. 广西师范大学学报(自然科学版),2015,33(3):28-33.
[13] 向阳,曾超尘,熊瑛,等. 基于GPRS网络的育苗温室远程监控系统研究[J]. 农机化研究,2015(10):228-231.
[14] 苗凤娟,高玉峰,陶佰睿,等. 基于物联网与太阳能光伏的智能温室监控系统设计[J]. 科技通报,2016,32(9):89-92.
[15] 刘立功,赵连法,刘超,等. 光伏太阳能温室的特点及应用前景[J]. 中国蔬菜,2013(15):1-4.
[16] 赵雪,邹志荣,许红军,等. 光伏日光温室夏季光环境及其对番茄生长的影响[J]. 西北农林科技大学学报(自然科学版),2013,41(12):93-99.
[17] AUGUSTIN A, YI J Z, CLAUSEN T, et al. A study of LoRa: long range & low power networks for the internet of things[J]. Sensors,2016,16(9):1466.
[18] 何灿隆,沈明霞,刘龙申,等. 基于NB-IoT的温室温度智能调控系统设计与实现[J]. 华南农业大学学报,2018,39(2):117-124.
[19] SONG Y H, LIN J, TANG M, et al. An Internet of energy things based on wireless LPWAN[J]. Engineering,2017,3(4):460-466.
[20] 袁月明,宋阳,周丽娜,等. 基于Ecotect猪舍光热环境的模拟仿真[J]. 吉林农业大学学报,2018,40(4):497-501.
[21] 杨金堂,万欢,晏远志,等. Fuzzy-PID与PLC在石煤提钒焙烧系统中的应用研究[J]. 机械设计与制造,2019(12):138-142
[22] 张艺凡,王萍,高卫国,等. 基于BP-PID的电主轴单元闭环稳定性温控策略[J]. 天津大学学报(自然科学与工程技术版),2017,50(8):885-891.
[23] 申超群,杨静. 温室温度控制系统的RBF神经网络PID控制[J]. 控制工程,2017,24(2):361-364.
[24] 李明,封航,张延顺. 基于UMAC的RBF神经网络PID控制[J]. 北京航空航天大学学报,2018,44(10):2063-2070.
[25] 魏同发. 基于神经网络的PID算法在生物质发酵控制中的应用研究[D]. 济南:齐鲁工业大学,2019.
[26] 李杨. 基于物联网的温室番茄生长环境智能测控系统[D]. 泰安:山东农业大学,2019.
[27] 张智杰,王成云. 棚室番茄对温度的要求[J]. 现代农业科技,2014(4):104,108.
[28] 岳钉伊,潘铜华,王嘉维,等. 增施CO2与LED补光对日光温室番茄生长的影响[J]. 西北农林科技大学学报(自然科学版),2017,45(7):81-89,96.
[1] GUO Jun, CHEN Dan, ZHU Chan, TANG Zongxiang. Analgesic Effect and Analgesic Mechanism of Angelica dahurica Extracts [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 103-110.
[2] PAN Xiaomei, LI Mingjin, YANG Zhangqi, MA Jiangming, LING Tianwang, YAN Peidong. Study on Undergrowth Flora of Pinus massoniana Plantations with Four Different Forest Ages in Southern Subtropical Area of Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 136-143.
[3] XU Lidan, ZHAO Min, LI Meilin, ZENG Chen, MO Xiuyu, LIU Meina, ZHU Pingchuan, HE Yongqiang. Comparative Study on Basic Phenotypes and Chemotaxis of the Two Pathovars of Xanthomonas oryzae [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 179-187.
[4] TENG Zhijun, LÜ Jinling, GUO Liwen, XU Yuanyuan. Coverage Strategy of Wireless Sensor Network Based on Improved Particle Swarm Optimization Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 9-16.
[5] QIN Ying. A Newly Recorded Genus of Polygalaceae from Guangxi,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 126-128.
[6] TANG Dandan, MA Jiangming, LI Haixia. Flora of Vascular Plant in Fengshui Woods on Karst Hills of Guilin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 126-132.
[7] XIAO Fayuan,LI Haowei. A Routing Optimization Algorithm for Wireless Sensor Network Based on Fuzzy Theory [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 37-43.
[8] WANG Ying, WEI Hongjin, XIONG Zhibin, DAI Xiling, YAN Yuehong. New Records for Ferns from Guizhou, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 140-143.
[9] LIU Hong, WANG Qi-tao, XIA Wei-jun. The Three-dimensional Positioning Method of WSN Based on Quantum Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 49-54.
[10] LUO Qiang, HU San-gen, ZANG Xiao-dong, GONG Hua-wei. Design of Monitoring and Control System on Greenhouse Environment Factor Based on ZigBee Technology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 28-33.
[11] DUAN Lin-lin, LIANG Shi-chu, LI Fu-rong, ZHOU Qiao-jin. Comparison of the Leaf Allelopathic Potential of the Invasive WetlandPlant Spartina alterniflora and Three Native Mangrove Plants [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 109-114.
[12] YUE Cai-jie, CHEN Yuan-yan, ZHU Xin-hua. An Effective Area Query Algorithm in Sensor Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 52-58.
[13] JIANG Wei, WU De-bo, LIN Yin, YANG Wen-shan, NI Zhe, HE Yong-qiang, HUANG Sheng. Establishment of a Screening Model for Searching Pathogenicity-related Genes in Xanthomonas oryzae pv. oryzae K74 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 135-141.
[14] CAI Wen-xia, HUANG Guang-hui, WANG Ting-ting, FU Shan, HE Yong-qiang, JIANG Wei. Functional Analysis of a Hypothetical udgH Gene in Xanthomona oryzae pv. oryzicola [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 109-115.
[15] HUANG Sheng, LU Ye, ZHU Xiao-lin, PAN Jun-xia, HE Yong-qiang, JIANG Wei. A New Gene is Required for Full Virulence of Xanthomonas oryzae pv. oryzicola in Rice [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 137-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xin-ming, ZHANG Yu-shan, LI Zhen-yun. Image Thresholding Method Based on Improved Moment Preserving[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 185 -190 .
[2] SU Cheng, CHEN Wen-na, ZHOU Ling, HUANG Dong-mei. Mechanism of Multi-agent Task Allocation for Ocean Spatial Data Integration[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 205 -209 .
[3] HUANG Ting-hong, WANG Miao, MA Kai, YANG Kun-guo, HUANG Ying-da, YOU Teng-li, WANG Xiu-jian. Synthesis,Crystal Structure and Spectroscopic Properties of[Ag(pba)(Et-dtc)]·p-xylene[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 43 -46 .
[4] XU Li, DING Shi-fei, GUO Feng-feng. A Rough Kernel Clustering Algorithm Based on ImprovedAttribute Reduction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 105 -109 .
[5] ZHANG Wei, JI Shu-juan, LIANG Yong-quan. Optimal Resource Allocation in Fire Rescue[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 192 -196 .
[6] LIU Weiming, CHEN Gangmei, LIN Guanrong, LI Jingning. Coordination Control Method for Toll Station of Freeway and Adjacent Intersection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 16 -26 .
[7] WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68 -73 .
[8] WANG Jiayu. Proximate Projected-Like Method for Solving Generalized Mixed Variational Inequalities in Finite Dimension Spaces[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 86 -93 .
[9] WANG Han, WANG Xu’an, ZHOU Neng, LIU Yudong. Blockchain-based Public Verifiable Scheme for Sharing Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 1 -7 .
[10] DUAN Huajuan, WEI Yongqing, LIU Peiyu, ZHOU Peng. An Improved Multi-decision Tree Algorithm for Imbalanced Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 72 -80 .