Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (5): 110-121.doi: 10.16088/j.issn.1001-6600.2020111401

Previous Articles     Next Articles

Classification of Non-Functional Software Requirements Using Word Embeddings and Long Short-Term Memory

LI Bing1, LI Zhi1*, YANG Yilong2   

  1. 1. College of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. College of Software, Beihang University, Beijing 100191, China
  • Received:2020-11-14 Revised:2021-02-22 Online:2021-09-25 Published:2021-10-19

Abstract: Non-functional requirements (NFR) describes a set of quality attributes required by the software, such as safety, reliability, performance, etc. In order to develop high-quality software products, it would be beneficial to automatically extract NFR from the Software Requirements Specification (SRS), which not only reduces the labor, time, and mental fatigue involved in identifying specific requirements from a large number of requirements, but also helps developers provide high-quality software that fully meets user expectations. In order to solve this problem, by adopting deep learning feature extraction and classification technology, a BERT-LSTM network model based on the combination of pre-trained BERT word embeddings and long short-term memory network LSTM is proposed, which is used for automatic NFR classification of quality software development. First, use the BERT model to train the word vectors in the sentence. Then use the Long Short-Term Memory network to further perform feature selection and dimensionality reduction. And finally use the Softmax classifier to identify NFR from SRS. Experiments show that in the PROMISE corpus composed of NFR, the BERT-LSTM network model has achieved the best results compared with other algorithms in terms of precision, recall, F1 score, and other indicators.

Key words: non-functional requirements, software requirements specification, BERT, long short-term memory

CLC Number: 

  • TP183
[1] 贾一荻, 刘璘. 中文非功能需求描述的识别与分类方法研究[J]. 软件学报, 2019, 30(10): 3115-3126. DOI:10.13328/j.cnki.jos.005791.
[2] KRASNER H. The cost ofpoor quality software in the us: a 2018 report[R]. Milford, MA: Consortium for IT Software Quality, 2018: 14.
[3] 卢蒙蒙. 用户评论中非功能需求的自动分类[D]. 武汉: 武汉大学, 2018.
[4] BAKER C, DENG L, CHAKRABORTY S, et al. Automatic multi-class non-functional software requirements classification using neural networks[C] // 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). Los Alamitos, CA: IEEE Computer Society, 2019: 610-615. DOI:10.1109/COMPSAC.2019.10275.
[5] AMELLER D, AYALA C, CABOT J, et al.How do software architects consider non-functional requirements: an exploratory study[C] // 2012 20th IEEE International Requirements Engineering Conference (RE). Piscataway, NJ: IEEE Press, 2012: 41-50. DOI:10.1109/RE.2012.6345838.
[6] 李潇, 魏长江. 基于扩展I*框架的嵌入式系统需求建模方法[J]. 青岛大学学报(自然科学版), 2019, 32(1): 66-73. DOI:10.3969/j.jssn.1006-1037.2019.02.14.
[7] 夏廷红. 软件非功能需求双语知识图谱构建及实体链接研究[D]. 昆明: 云南大学, 2019.
[8] BROY M. Rethinking nonfunctional software requirements[J]. Computer, 2015, 48(5): 96-99. DOI:10.1109/MC.2015.139.
[9] HAQUE M A, RAHMAN M A, SIDDIK M S. Non-functional requirements classification with feature extraction and machine learning: an empirical study[C] // 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). Piscataway, NJ: IEEE Press, 2019: 1121-1125. DOI:10.1109/ICASERT.2019.8934499.
[10] CLELAND-HUANG J, SETTIMI R, ZOU X C, et al. The detection and classification of non-functional requirements with application to early aspects[C] // 14th IEEE International Requirements Engineering Conference (RE′06). Los Alamitos, CA: IEEE Computer Society, 2006: 39-48. DOI:10.1109/RE.2006.65.
[11] HUSSAIN I, KOSSEIM L, ORMANDJIEVA O. Using linguistic knowledge to classify non-functional requirements in SRS documents[C] // Natural Language and Information Systems: LNCS Volume 5039. Berlin: Springer, 2008: 287-298. DOI:10.1007/978-3-540-69858-6_28.
[12] NAVARRO-ALMANZA R, JUAREZ-RAMIREZ R, LICEA G. Towards supporting software engineering using deep learning:a case of software requirements classification[C] // 2017 5th International Conference in Software Engineering Research and Innovation (CONISOFT). Los Alamitos, CA: IEEE Computer Society, 2017: 116-120. DOI:10.1109/CONISOFT.2017.00021.
[13] MATSUMOTO Y, SHIRAI S, OHNISHI A. A method for verifying non-functional requirements[J]. Procedia Computer Science, 2017, 112: 157-166. DOI:10.1016/j.procs.2017.08.006.
[14] LU M M, LIANG P. Automatic classification of non-functional requirements from augmented app user reviews[C] // Proceedings of the 21st International Conference on Evaluation and Assessment in Software Engineering. New York, NY: Association for Computing Machinery, 2017: 344-353. DOI:10.1145/3084226.3084241.
[15] SLANKAS J, WILLIAMS L. Automated extraction of non-functional requirements in available documentation[C] // 2013 1st International Workshop on Natural Language Analysis in Software Engineering (NaturaLiSE). Piscataway, NJ: IEEE Press, 2013: 9-16. DOI:10.1109/NAturaLiSE.2013.6611715.
[16] KHAN F, JAN S R, TAHIR M, et al. Survey: dealing non-functional requirements at architecture level[J]. VFAST Transactions on Software Engineering, 2016, 4(1): 27-33. DOI:10.21015/vtse.v9i2.410.
[17] KURTANOVIC' Z, MAALEJ W. Automatically classifying functional and non-functional requirements using supervised machine learning[C] // 2017 IEEE 25th International Requirements Engineering Conference (RE). Los Alamitos CA:IEEE Computer Society, 2017: 490-495. DOI:10.1109/RE.2017.82.
[18] 胡文生, 杨剑锋, 赵明. 基于灰色聚类算法的需求分析[J]. 计算机科学, 2016, 43(增刊1): 471-475. DOI:10.11896/j.issn.1002-137X.2016.6A.111.
[19] KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(8): 5455-5516. DOI:10.1007/s10462-020-09825-6.
[20] NARIN A, KAYA C, PAMUK Z. Automatic detection of coronavirus disease(covid-19) using X-ray images and deep convolutional neural networks[EB/OL]. (2020-03-24)[2020-11-14]. https:// arxiv.org/pdf/2003.10849.
[21] DOS SANTOS C, GATTI M. Deep convolutional neural networks for sentiment analysis of short texts[C] // Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. Stroudsburg PA: Association for Computational Linguistics, 2014: 69-78.
[22] HINTON G, DENG L, YU D, et al.Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. DOI:10.1109/MSP.2012.2205597.
[23] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI:10.1162/neco.1997.9.8.1735.
[24] DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[C] // Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Volume 1 (Long and Short Papers). Stroudsburg PA: Association for Computational Linguistics, 2019: 4171-4186. DOI:10.18653/v1/N19-1423.
[25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] // Advances in Neural Information Processing Systems 30:31st Annual Conference on Neural Information Processing Systems(NIPS 2017). Red Hook, NY: Curran Associates Inc, 2017: 6000-6010.
[26] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. (2014-09-08)[2020-11-14]. https:// arxiv.org/pdf/1409.2329.
[27] SINGH M, SALARIA D S. Software defect prediction tool based on neural network[J]. International Journal of Computer Applications, 2013, 70(22): 22-28. DOI:10.5120/12200-8368.
[28] KIM Y. Convolutional neural networks for sentence classification[C] // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg PA: Association for Computational Linguistics, 2014: 1746-1751. DOI:10.3115/v1/D14-1181.
[29] LIU P F, QIU X P, HUANG X J. Recurrent neural network for text classification with multi-task learning[C] // Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16). Palo Alto, CA: AAAI Press, 2016: 2873-2879.
[30] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C] // Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics: Volume 2, Short Papers. Stroudsburg PA: Association for Computational Linguistics, 2016: 207-212. DOI:10.18653/v1/P16-2034.
[31] LAI S W, XU L H, LIU K, et al. Recurrent convolutional neural networks for text classification[C] // Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 2267-2273.
[32] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C] // Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Stroudsburg PA: Association for Computational Linguistics, 2017: 427-431. DOI:10.18653/v1/E17-2068.
[33] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C] // Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics: Volume 1, Long Papers. Stroudsburg PA: Association for Computational Linguistics, 2017: 562-570. DOI:10.18653/v1/P17-1052.
[34] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI:10.1109/CVPR.2016.90.
[1] XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50.
[2] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45-52.
[3] FAN Rui, JIANG Pinqun, ZENG Shangyou, XIA Haiying, LIAO Zhixian, LI Peng. Design of Lightweight Convolution Neural Network Based on Multi-scale Parallel Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 50-59.
[4] ZHOU Ronglong,LUO Yuling,BI Jinjie,CEN Mingcan,QIU Senhui,LIAO Zhixian. Applications of Image Parallel Encryption Algorithm in Handheld Devices [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 60-70.
[5] ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89.
[6] LIU Ming, ZHANG Shuangquan, HE Yude. Classification Study of Differential Telecom Users Based on SOM Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 17-24.
[7] WAN Lei,LUO Yuling,HUANG Xingyue. Monitoring Platform for the Hardware Spike Neural Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 9-16.
[8] LIN Xiao-yu, ZHONG Yi-wen, WANG Ai-rong. Artificial Bee Colony with Chemotaxis Behavior for TrainingArtificial Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 120-124.
[9] ZHU Jing-wei, RUI Ting, LI Jue-long, FANG Hu-sheng, ZHANG Jin-lin. Self-organizing Inverse Kinematics Planning for Manipulators Based on Ant Colony Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 125-129.
[10] LÜ Huilian, HU Weiping. Research on Speech Emotion Recognition Based on End-to-End Deep Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Li, ZOU Yanli, WANG Yi, LI Ke. A Comparative Study on Three Types of Distributed PowerPlant Connection Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 30 -36 .
[2] SU Xu, LIU Yu-ping. Photosynthetic Characteristics of Mentha haplocalyx Briq. of the Medical Plant Growing in Qinghai,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 76 -81 .
[3] ZHU Jing-wei, RUI Ting, LI Jue-long, FANG Hu-sheng, ZHANG Jin-lin. Self-organizing Inverse Kinematics Planning for Manipulators Based on Ant Colony Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 125 -129 .
[4] E Xu, SHAO Liang-shan, LI Sheng, WANG Quan-tie. Discretization Algorithm for Interval Numbers by Associated Degree[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 134 -137 .
[5] LU Hong, QIN Yong-bin, LUO Cong. Application of Memetic Algorithm in the Airport Ground Services Scheduling Problem[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 145 -150 .
[6] ZHANG Xin-ming, ZHANG Yu-shan, LI Zhen-yun. Image Thresholding Method Based on Improved Moment Preserving[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 185 -190 .
[7] XIONG Shun-qing, ZHOU Wei-hong. New Digital Watermarking Algorithm Based on NSCT and SVD[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 195 -199 .
[8] SHEN Ze-hao, YE Zhong-xing. Fuzzy Clustering Analysis of Customer Credit Risk of Futures Company[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 101 -104 .
[9] ZHAO Xin , SONG Yingqiang, HU Yueming, LIU Yilun, ZHU Axing. Optimizing Spatial Distribution of Residential Areas by Using Multi-Source Open Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 26 -40 .
[10] SUN Zuochen, WANG Qihan, LONG Boyong. A Subclass of Harmonic Univalent Functions[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 54 -59 .