Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (4): 86-93.doi: 10.16088/j.issn.1001-6600.2019.04.011

Previous Articles     Next Articles

Proximate Projected-Like Method for Solving Generalized Mixed Variational Inequalities in Finite Dimension Spaces

WANG Jiayu   

  1. School of Mathematical Sciences, Sichuan Normal University, Chengdu Sichuan 610068
  • Received:2018-09-11 Online:2019-10-25 Published:2019-11-28

Abstract: In this paper,with the adoption of the proximate functional and proximate projection method proposed by Auslender and the establishment of the proximal projection-like method for solving generalized mixed variational inequalities in finite dimension spaces, two results are obtained. Firstly, the iterative sequence is well-defined. Then, every accumulation point of the sequence is a solution of generalized mixed variational inequalities under the condition that the set-valued mapping is pseudo-monotone mapping with upper semi-continuity and f is the lower semi-continuity true convex.

Key words: generalized mixed variational inequalities, projected-like method, proximate functional, pseudomonotone

CLC Number: 

  • O22
[1] SOLODOV M V,SVAITER B F. A new projection method for variational inequality problems[J].SIAM Journal on Control and Optimization, 1999,37(3):765-776.
[2] AUSLENDER A,TEBOULLE M. Projected subgradient menthods whth non-eucliden distances for non-differentiable convex minimization and variational inequalities[J].Mathematical Programming, 2009,120(1):27-48.DOI:10.1007/s10107-007-0147-z.
[3] SALMON G,STRODIOT J J. A bundle method for solving variational inequalities[J].SIAM Journal on Control and Optimization, 2004,14(3):869-893. DOI:10.1137/s1052623401384096.
[4] DING X P,YAO J C,ZENG L C. Existence and algorithm of solutions for generalized strongly nonlinear mixed variational-like inequalities in Banach spaces[J].Computers and Mathematics with Applications, 2008,55(4):669-679.DOI:10.1016/j.camwa.2007.06.004.
[5] DING X P,WANG Z B. The auxiliary principle and an algorithem for a system of generalized set-valued mixed variational inequality in Banach spaces[J].Journal of Computational and Applied Mathematics,2010,233(11):2876-2883. DOI:10.1016/j.cam.2009.11.033.
[6] YAO J C. Existence of generalized variational inequalities[J].Operations Research Letters, 1994,15(1):35-40.
[7] ROCKFELLAR R T. Monotone operators and the proximal point algorith[J].SIAM Journal on Control and Optimization,1976,14:877-898.
[8] HUE TT,STRODIOT J J,NGUYEN V H. Convergence of the approximate peturbed auxiliary problem methods to solve Generalized variational inequalities[J].Journal of Optimization Theory & Applications,2004,121:119-145. DOI:10.1023/b:jota.0000026134.57920.e1.
[9] AUSLENDER A,TEBOULLE M. Interior projection-like methods for monotone variational inequalities[J]. Mathematical Programming,2005,104:39-68.DOI:10.1007/s10107-004-0568-x.
[10]DING X P,TAN K K. A minimax inequality with application to existhce of equilibrium point and fixed point theorems[J].Colloquium Mathematicum, 1992,63(2):233-247.DOI:10.4064/cm-63-2-233-247.
[11]AUBIN J P,EKELAND I. Applied nonlinear analysis[M].New York: Wiley,1984. DOI:10.1016/c2013-0-11033-1.
[12]POLYAK B T. Introduction to optimization[M]. New York:Optimization Software Inc, 1987.
[1] XU Ziwen. New Double Projection Algorithms for Non-monotone Variational Inequality Problems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 52-58.
[2] TANG Guoji. Solvability for Generalized Mixed Variational Inequalities with Perturbation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 76-83.
[3] ZHANG Ya-ling, MU Xue-wen. A Barzilai-Borwein Gradient Algorithm for Second-order Conic Programming [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 65-71.
[4] PENG Zai-yun, KONG Xiang-xi. Strongly Semi-G-preinvexity and Nonlinear Programming [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Yuhui, CHEN Zening, HUANG Zhonghao, ZHOU Qihai. Activity Time Budget of Assamese macaque (Macaca assamensis) during Rainy Season in Nonggang Nature Reserve, Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 80 -86 .
[2] QIN Yingying, QI Guangchao, LIANG Shichu. Effects of Eichhornia crassipes Aqueous Extracts on Seed Germination of Ottelia acuminata var. jingxiensis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 87 -92 .
[3] ZHUANG Fenghong, MA Jiangming, ZHANG Yajun, SU Jing, YU Fangming. Eco-Physiological Responses of Leaves of Isoetes sinensis to Light Intensity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 93 -100 .
[4] WEI Hongjin, ZHOU Xile, JIN Dongmei, YAN Yuehong. Additions to the Pteridophyte Flora of Hunan, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 101 -106 .
[5] BAO Jinping, ZHENG Lianbin, YU Keli, SONG Xue, TIAN Jinyuan, DONG Wenjing. Skinfold Thickness Characteristics of Yi Adults in Daliangshan,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 107 -112 .
[6] LIN Yongsheng, PEI Jianguo, ZOU Shengzhang, DU Yuchao, LU Li. Red Bed Karst and Its Hydrochemical Characteristics of Groundwater in the Downstream of Qingjiang River, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 113 -120 .
[7] LI Xianjiang, SHI Shuqin, CAI Weimin, CAO Yuqing. Simulation of Land Use Change in Tianjin Binhai New Area Based on CA-Markov Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 133 -143 .
[8] WANG Mengfei, HUANG Song. Spatial Linkage of Tourism Economy of Cities in West River Economic Belt in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 144 -150 .