Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (4): 1-8.doi: 10.16088/j.issn.1001-6600.2020070603
HU Jinming, WEI Duqu*
CLC Number:
[1]孙黎霞,鲁胜,温正赓,等. 永磁同步电机混沌运动机理分析[J]. 电机与控制学报,2019,23(3):97-104. DOI:10.15938/j.emc.2019.03.013. [2]赵一民,黄植功. 基于模糊变步长神经网络的永磁同步电机控制系统[J]. 广西师范大学学报(自然科学版),2015, 33(4):20-24. DOI:10.16088/j.issn.1001-6600.2015.04.004. [3]李亮,李庆宾,毛北行. 分数阶同步发电机系统的混沌同步[J]. 河南科学,2017, 35(3):350-354. [4]吴雷,阳丽,李啟尚,等. 基于小增益定理的同步磁阻电机混沌控制[J]. 广西师范大学学报(自然科学版),2019,37(2):44-51. DOI:10.16088/j.issn.1001-6600.2019.02.006. [5]谢成荣,张仁愉,王仁明,等. 参数未知的永磁同步电机混沌系统模糊自适应同步控制[J]. 动力学与控制学报,2017,15(6):537-543. DOI:10.6052/1672-6553-2017-41. [6]余伟,皮佑国. 永磁同步电机分数阶建模与实验分析[J]. 华南理工大学学报(自然科学版),2013,41(8):55-60. DOI:10.3969/j.issn.1000-565X.2013.08.009. [7]徐健,孙泽维. 基于分数阶混沌系统同步与稳定性分析[J]. 自动化技术与应用,2019,38(1):10-13,22. [8]MARTÍNEZ-GUERRA R,MATA-MACHUCA J L. Fractional generalized synchronization in a class of nonlinear fractional order systems[J]. Nonlinear Dynamics,2014,77(4):1237-1244. DOI:10.1007/s11071-014-1373-6. [9]徐全,庄圣贤,徐晓惠,等. 永磁同步电机的分数阶自适应控制[J]. 西华大学学报(自然科学版),2017,36(4):21-26. DOI:10.3969/j.issn.1673-159X.2017.04.004. [10]XUE W,ZHANG M,WANG R. Synchronization of fractional-order PMSM chaotic model based on backstepping control method[C]// 2017 9th International Conference on Modelling, Identification and Control (ICMIC). Piscataway,NJ:IEEE,2017:647-651. DOI:10.1109/ICMIC.2017.8321535. [11]ZHANG W T,JIN X Z,YANG K,et al. Robust Control and synchronization of chaotic fractional-order permanent magnet synchronous machine[C]// 2019 Chinese Control And Decision Conference (CCDC). Piscataway,NJ:IEEE,2019:1187-1192. DOI:10.1109/CCDC.2019.8832696. [12]王亚民,朱鑫铨,姬天富,等. 不同阶异结构分数阶混沌系统的广义投影同步[J]. 扬州大学学报(自然科学版),2013,16(4):22-25. [13]李明,陈旭,郑永爱. 一类分数阶不确定混沌系统的混合投影同步[J]. 电子设计工程,2017,25(12):11-14,18. DOI:10.3969/j.issn.1674-6236.2017.12.003. [14]李睿,张广军,姚宏,等. 参数不确定的分数阶混沌系统广义错位延时投影同步[J]. 物理学报,2014, 63(23):230501. DOI:10.7498/aps.63.230501. [15]张玮玮,陈定元. 不同阶数不同维数的分数阶混沌系统的时滞混合投影同步[J]. 工程数学学报,2017,34(3):321-330. DOI:10.3969/j.issn.1005-3085.2017.03.008. [16]OUANNAS A,GRASSI G. Inverse full state hybrid projective synchronization for chaotic maps with different dimensions[J]. Chinese Physics B,2016,25(9):090503. DOI:10.1088/1674-1056/25/9/090503. [17]孟晓玲,程春蕊. 一类分数阶混沌系统的修正函数投影同步[J]. 湖北大学学报(自然科学版), 2018,40(3): 232-236. DOI:10.3969/j.issn.1000-2375.2018.03.004. [18]耿彦峰,王立志. 基于滑模控制分数阶统一混沌系统的函数投影同步[J]. 天津师范大学学报(自然科学版),2019,39(3):23-26,42. [19]OUANNAS A,AZAR A T,VAIDYANATHAN S. A robust method for new fractional hybrid chaos synchronization[J]. Mathematical Methods in the Applied Sciences,2017, 40(5):1804-1812. DOI:10.1002/mma.4099. [20]胡建兵,肖建,赵灵冬. 阶次不等的分数阶混沌系统同步[J]. 物理学报,2011,60(11):110515. DOI:10.7498/aps.60.110515. [21]OUANNAS A,GRASSI G,AZAR A T, et al. New control schemes for fractional chaos synchronization[C]// Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018. Berlin:Springer,2018:52-63. DOI:10.1007/978-3-319-99010-1_5. [22]SI G Q,SUN Z Y,ZHANG Y B,et al. Projective synchronization of different fractional-order chaotic systems with non-identical orders[J]. Nonlinear Analysis:Real World Applications,2012,13(4):1761-1771. DOI:10.1016/j.nonrwa.2011.12.006. [23]AGUILA-CAMACHO N,DUARTE-MERMOUD M A. Comments on “Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks”[J]. Communications in Nonlinear Science and Numerical Simulation,2015,25(1/2/3):145-148. DOI:10.1016/j.cnsns.2015.01.013. [24]OUANNAS A,ODIBAT Z,HAYAT T. Fractional analysis of co-existence of some types of chaos synchronization[J]. Chaos,Solitons & Fractals,2017,105:215-223. DOI:10.1016/j.chaos.2017.10.031. [25]颜闽秀,王哲. 分数阶超混沌系统的完全状态投影同步[J]. 沈阳大学学报(自然科学版),2015,27(2):135-138. DOI:10.16103/j.cnki.21-1583/n.2015.02.010. [26]AZAR A T,OUANNAS A,SINGH S. Control of new type of fractional chaos synchronization[C]// Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017. Berlin:Springer,2017:47-56. DOI:10.1007/978-3-319-64861-3_5. [27]DIETHELM K,FORD N J,FREED A D. A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics,2002,29(1/2/3/4):3-22. DOI:10.1023/A:1016592219341. |
[1] | WU Lei, YANG Zhi, ZHANG Lei, BAI Kezhao. Sliding Mode Control for Fractional Chaotic Order Synchronous Reluctance Motor [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 62-70. |
[2] | ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26. |
[3] | WU Lei, YANG Li, LI Qishang, XIAO Huapeng. Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 44-51. |
[4] | WU Lei,YANG Li,GUO Pengxiao. Feedback Linearization Control of Rucklidge System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 21-27. |
[5] | WANG Jian, HUANG Zhi-gong, XU Jin-hai. Speed Estimation of Permanent Magnet Synchronous Motor Based on Optimized EKF [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 11-17. |
[6] | XU Sheng-zhou, XU Xiang-yang, HU Huai-fei, LI Bo. Left Ventricle MRI Segmentation Based on Developed Dynamic Programming [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 35-41. |
[7] | KANG Yun-lian, LIU Long-sheng, ZHAO Jun-ling. Distributional Chaotic Property of the Factor System of Symbolic Dynamical System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 66-70. |
[8] | LIU Jun-xian, PEI Qi-ming, QIN Zong-ding, JIANG Yu-ling. Study of the Lorenz Equations in a New Parameter Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 1-12. |
[9] | GAO Jun-fen, HU Wei-ping. Recognition and Study of Pathological Voices Based on NonlinearDynamics Using GMM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 5-8. |
[10] | LI Yong, JIA Zhen. Applications of Discrete Chaotic Systems in Secure Communication [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 15-19. |
|