Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (4): 9-20.doi: 10.16088/j.issn.1001-6600.2020062602

Previous Articles     Next Articles

FIR Equalizer Based on Mini-batch Gradient Descent Method

WU Kangkang, ZHOU Peng, LU Ye*, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang   

  1. Lab of Optoelectronics and Optical Communications, College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2020-06-26 Revised:2020-09-24 Online:2021-07-25 Published:2021-07-23

Abstract: In order to solve the problem that the gradient descent algorithm has a slow convergence speed, uses all the sample points each time to update the gradient, and has a large amount of calculation and high complexity, a novel dispersion compensated FIR (fine length impulse response) filter for coherent optical receiver is proposed. Through building coherent optical communication system baseband multi-rate transmission model in Matlab, using the Mini-Batch Gradient Descent method with 1% of the total samples to update the weights of filter tap h(n) every time calculating the mean square error and updating the filter gradient, the computational complexity can be reduced to 1% of the original. When the learning efficiency is 0.05, the convergence value reaches 0.005 5, which has a smaller mean square error convergence value. When the mean square error converges, the weight of the filter tap is obtained. The filter weights obtained by this method has a better filtering effect and lower bit error in the whole frequency band. After using baseband pulse shaping to limit the effective bandwidth of the baseband signal, the number of filter taps is 197, which is 37.5% less than the number of taps in the full frequency band. Therefore, an optimal filter with fewer taps and better filtering effects can be designed in a narrow frequency band.

Key words: coherent optical communication system model, mean square error, FIR filter, tap weights, mini-batch gradient descent, optimal filter

CLC Number: 

  • TN713
[1]韩纪龙. 相干光通信中数字信号处理算法优化研究[D].武汉:华中科技大学,2017.
[2]王亭文.通信工程中光纤技术的设计应用和发展趋势[J].中国新通信,2020,22(1):6-7.
[3]徐斌.谈通信工程设计中光纤技术的应用[J].通讯世界,2019,26(12):149-150.
[4]申静,潘建.色散补偿光纤的分波长色散补偿[J].光通信技术,2019,43(2):27-29.
[5]高瞻,王孝周.高速传输系统的偏振模色散补偿技术[J].通信技术,2012,45(2):73-75,83.
[6]祝贵君. 高速光通信中的电域色散补偿算法研究[D].温州:温州大学,2018.
[7]GOLDFARB G, LI G F. Chromatic dispersion compensation using digital IIR filtering with coherent detection[J]. IEEE Photonics Technology Letters, 2007, 19(13): 969-971.
[8]LIU Y M, ZHANG Y H, PENG Y F, et al. Equalization of chromatic dispersion using wiener filter for coherent optical receivers[J]. IEEE Photonics Technology Letters, 2016, 28(10): 1092-1095.
[9]DAVIS C C, MURPHY T E. Fiber-optic communications[J]. IEEE Signal Processing Magazine, 2011, 28(4): 148-150,152.
[10]BOWER P, DEDIC I. High speed converters and DSP for 100G and beyond[J]. Optical Fiber Technology, 2011, 17(5): 464-471.
[11]王大伟. 数字信号处理算法在相干光通信系统中的应用研究[D].杭州:浙江大学,2013.
[12]林宏,周传璘,赵娜,等.仿真分析相干光通信中的数字信号处理算法[J].现代电子技术,2019,42(19):54-58.
[13]SAVORY S J. Digital filters for coherent optical receivers[J].Optics Express,2008,16(2):804-817.
[14]SAVORY S J. Digital coherent optical receivers: algorithms and subsystems[J]. IEEE Journal of Selected Topics in Quantum Electronics,2010,16(5):1164-1179.
[15]LAVERY D, MAHER R, MILLAR D S,et al. Digital coherent receivers for long-reach optical access networks[J]. Journal of Lightwave Technology,2013,31(4):609-620.
[16]朱旭飞. 数字相干光通信系统色散补偿算法研究[D]. 桂林:广西师范大学,2020.
[17]EGHBALI A,JOHANSSON H,GUSTAFSSON O,et al. Optimal least-squares FIR digital filters for compensation of chromatic dispersion in digital coherent optical receivers[J]. Journal of Lightwave Technology, 2014,32(8):1449-1456.
[18]刘玉民. 相干光通信系统中信道均衡与频偏估计算法研究[D].北京:北京科技大学,2016.
[19]赵衍策. 高速相干光通信系统中色散均衡方法的研究[D].长春:吉林大学,2018.
[20]LIU Y Z, LIN Z P. Design of WLS FIR filters with group delay constraint[C]// 2007 6th International Conference on Information, Communications & Signal Processing. Piscataway,NJ:IEEE, 2007.
[21]田媛,梁永全.基于小批量梯度下降的布谷鸟搜索算法[J].山东科技大学学报(自然科学版),2020,39(5):56-67.
[22]PITTALÀ F, SLIM I, MEZGHANI A, et al. Training-aided frequency-domain channel estimation and equalization for single-carrier coherent optical transmission systems[J]. Journal of Lightwave Technology, 2014, 32(24): 4849-4863.
[23]李季檩,吕宝粮. 复系数FIR数字滤波器的神经网络设计方法[J]. 计算机仿真,2008(2):175-177,189.
[24]蔡炬,张璐,赵雅静,等. 准线性光传输系统色散管理方案[J]. 量子电子学报,2015,32(3):378-384.
[25]黄峻堃,张少武,万冲.非线性色散对高斯脉冲传输的影响[J].量子电子学报,2018,35(5):603-607.
[26]ELLIS A D, AL KHATEEB M A Z, MCCARTHY M E. Impact of optical phase conjugation on the nonlinear Shannon limit[J]. Journal of Lightwave Technology, 2017, 35(4): 792-798.
[27]CARTLEDGE J C, GUIOMAR F P, KSCHISCHANG F R, et al. Digital signal processing for fiber nonlinearities[J]. Optics Express, 2017, 25(3): 1916-1936.
[28]AL-KHATEEB M A Z, Mc CARTHY M, SÁNCHEZ C, et al. Effect of second order signal-noise interactions in nonlinearity compensated optical transmission systems[J]. Optics Letters, 2016, 41(8): 1849-1852.
[29]陈雨露. 相干光通信系统DSP补偿算法研究[D].北京:北京邮电大学,2013.
[30]YU Y,YIN H W,HUANG Z P. Simulation study of DP-QPSK coherent detection transmission system based on optisystem[J]. Optics and Photonics Journal,2020,10(6):134-140.
[31]KIKUCHI K . Fundamentals of coherent optical fiber communications[J]. Journal of Lightwave Technology,2016, 34(1):157-179.
[32]郭红超. 相干光通信系统中信道均衡算法的研究[D].北京:北京邮电大学,2019.
[33]史继荣,刘琳.2.5 Gbit/s相干光通信系统的研究[J].上海电气技术,2019,12(3):14-16.
[34]曹文华.准线性光纤传输系统中几种色散补偿方案的性能比较[J].光学学报,2018,38(4):62-69.
[35]陈林,张晓光,张茹,等. 偏振模色散对多信道光纤通信系统信号的影响[J]. 光子学报,2004,33(4):443-447.
[36]RIBEIRO V B,OLIVEIRA J C R F,DINIZ J C M,et al. Enhanced digital polarization demultiplexation via CMA step size adaptation for PM-QPSK coherent receivers[C]// Optical Fiber Communication Conference & Exposition. Piscataway, NJ: IEEE, 2012.
[37]王红恩. 相干光通信系统中载波频偏和相位恢复算法研究[D].北京:北京邮电大学,2019.
[1] JIANG Pinqun, GU Shen, SONG Shuxiang, CEN Mingcan. Harmonic Analysis and Anti-aliasing Research of N-path Band-stop Filter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 81-89.
[2] XIE Lina, JIANG Pinqun, SONG Shuxiang, CEN Mingcan. A Low-Loss, Low-Noise, Wide-Tuned High-Order Cascade N-Path Filter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 37-44.
[3] LIU Guolun, SONG Shuxiang, CEN Mingcan, LI Guiqin, XIE Lina. Design of Bandwidth Tunable Band-Stop Filter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 1-8.
[4] YUAN Weiqiang, SONG Shuxiang, CHENG Yang, ZHANG Yonggan. Design of Ultra-Wideband Microstrip Bandpass Filter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 32-38.
[5] SONG Shu-xiang. Synthesis Design Method of Odd-nth-order Current Mode All-passFilter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 9-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DAI Yunfei, ZHU Longji. Research on Switch Quasi-Z Source Bidirectional DC/DC Converter Applied to Super Capacitor Energy Storage[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 11 -19 .
[2] LÜ Huilian, HU Weiping. Research on Speech Emotion Recognition Based on End-to-End Deep Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 20 -26 .
[3] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[4] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[5] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[6] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[7] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[8] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[9] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[10] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .