Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (2): 144-153.doi: 10.16088/j.issn.1001-6600.2020061301

Previous Articles     Next Articles

Effects of Different Nitrogen Sources on Physicochemical Properties andMicrobial Community of Aerobic Granular Sludge

TANG Linqin1, WANG Anliu1, SU Chengyuan1,2*, DENG Xue1, ZHAO Lijian1, XIAN Yunchuan1, CHEN Yu1   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection Guangxi Normal University, GuilinGuangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-06-13 Revised:2020-09-14 Online:2021-03-25 Published:2021-04-15

Abstract: The effects of urea (NS), ammonium chloride (LA) and alanine (BA) on nitrogen form, physical and chemical characteristics and microbial community of aerobic granular sludge were investigated. The results showed that LA group had less removal of dissolved ammonia nitrogen, while the total nitrogen removal rate was the highest in NS group. The ratio of adsorptive organic nitrogen to adsorptive nitrogen in NS, LA and BA groups were 73.28%, 44.6% and 77.3% at the end of the experiment (40 d), indicating that the content of organic nitrogen in the sludge adsorbed state with ammonium chloride as the nitrogen source was less; The fluorescence intensity of tryptophan-like and coenzyme F420 peak in theextracellular polymeric substances (EPS) of the sludge was BA>NS>LA. At the end of the experiment, the nitrite oxidase of BA group increased by 91.8%, while that of NS and LA group increased by 2.8% and 40.8%, indicating that the use of ammonium chloride as the nitrogen source increased the activity of nitrite oxidase in the sludge. Microbial community showed that the predominant bacteria in the three groups were Proteobacteria, Candidatus Saccharibacteria and Bacteroidetes at phylum level. The abundance of Candidatus Saccharibacteria using ammonium chloride as a nitrogen source was the highest. The addition of alanine could significantly increase the abundance of denitrifying bacteria Proteobacteria and Bacteroidetes, which was the lowest in the LA group, indicating that taking alanine as the nitrogen source could make the denitrifying bacteria accumulate well. Kyoto Encyclopedia of Genes and Genomes (KEGG) secondary pathway diagram showed that amino acid metabolism, carbohydrate metabolism and membrane transport were the main pathways, among which the amino acid metabolism of group BA was the highest (13.11%). In general, the sludge with alanine as the nitrogen source had better denitrification performance and higher denitrification functional bacteria abundance.

Key words: nitrogen sources, aerobic granular sludge, extracellular polymer, microbial community

CLC Number: 

  • X703.1
[1] WU X,LI H,LEI L,et al.Tolerance to short-term saline shocks by aerobic granular sludge[J].Chemosphere,2020,243(3):125370.
[2] YANG G J,ZHANG N,YANG J N,et al.Interaction between perfluorooctanoic acid and aerobic granular sludge[J].Water Research,2020,169(2):115249.
[3] 李琦,朱兆亮,李明亮,等.好氧颗粒污泥的稳定运行条件及应用研究进展[J].山东建筑大学学报,2019,34(6):63-68.
[4] FEI Y H,ZHAO D,LIU Y,et al.Feasibility of sewage sludge derived hydrochars for agricultural application:Nutrients (N,P,K) and potentially toxic elements (Zn,Cu,Pb,Ni,Cd)[J].Chemosphere,2019,236(11):124841.
[5] LE C C,STUCKEY D C.Impact of feed carbohydrates and nitrogen source on the production of soluble microbial products (SMPs) in anaerobic digestion[J].Water Research,2017,122(10):10-16.
[6] HE S,DING L L,LI K,et al.Comparative study of activated sludge with different individual nitrogen sources at a low temperature:Effluent dissolved organic nitrogen compositions,metagenomic and microbial community[J].Bioresource Technology,2018,247(2):915-923.
[7] YE Z L,XIE X Q,DAI L H,et al.Full-scale blending treatment of fresh MSWI leachate with municipal wastewater in a wastewater treatment plant[J].Waste Management,2014,34(11):2305-2311.
[8] 柳利魁,张萌,刘俊良,等.A2/O工艺处理高氨氮城市污水调试运行[J].水处理技术,2017,43(5):123-125.
[9] 宋利.城市污水处理过程中不同形态氮类营养物的转化特性[D].西安:西安建筑科技大学,2015.
[10] FENG L K,WANG R G,JIA L X,et al.Can biochar application improve nitrogen removal in constructed wetlands for treating anaerobically-digested swine wastewater?[J].Chemical Engineering Journal,2020,379(1):122273.
[11] 李志伟.Zn(Ⅱ)和Ni(Ⅱ)协同作用对序批式生物反应器性能的影响[D].青岛:中国海洋大学,2015.
[12] WANG Y M,LIN Z Y,HE L,et al.Simultaneous partial nitrification,anammox and denitrification (SNAD) process for nitrogen and refractory organic compounds removal from mature landfill leachate:performance and metagenome-based microbial ecology[J].Bioresource Technology,2019,294(12):122166.
[13] SONG J X,CHEN L J,CHEN H D,et al.Characterization and high-throughput sequencing of a trichlorophenol-dechlorinating microbial community acclimated from sewage sludge[J].Journal of Cleaner Production,2018,197(10):306-313.
[14] LI Y Y,LIN L,LI X Y.Chemically enhanced primary sedimentation and acidogenesis of organics in sludge for enhanced nitrogen removal in wastewater treatment[J].Journal of Cleaner Production,2020,244(1):118705.
[15] LIAO K W,HU H D,MA S J,et al.Effect of microbial activity and microbial community structure on the formation of dissolved organic nitrogen (DON) and bioavailable DON driven by low temperatures[J].Water Research,2019,159(8):397-405.
[16] JIANG X Y,CHENG Y F,ZHU W Q,et al.Effect of chromium on granule-based anammox processes[J].Bioresource Technology,2018,260:1-8.
[17] CUI Y R,WU Q,YANG M S,et al.Three-dimensional excitation-emission matrix fluorescence spectroscopy and fractions of dissolved organic matter change in landfill leachate by biological treatment[J].Environmental Science and Pollution Research,2016,23(1):793-799.
[18] YAMIN G,BORISOVER M,COHEN E,et al.Accumulation of humic-like and proteinaceous dissolved organic matter in zero-discharge aquaculture systems as revealed by fluorescence EEM spectroscopy[J].Water Research,2017,108(7):412-421.
[19] WANG H,WANG Y H,ZHUANG W E,et al.Effects of fish culture on particulate organic matter in a reservoir-type river as revealed by absorption spectroscopy and fluorescence EEM-PARAFAC[J].Chemosphere,2020,239(1):124734.
[20] TANG Y Q,YU G R,ZHANG X Y,et al.Changes in nitrogen-cycling microbial communities with depth in temperate and subtropical forest soils[J].Applied Soil Ecology,2018,124(3):218-228.
[21] 卢宇翔,农志文,宿程远,等.微曝气-ABR处理养猪废水及微生物群落分布[J].广西师范大学学报(自然科学版),2018,36(4):90-98.
[22] HANADA A,KUROGI T,GIANG N M,et al.Bacteria of the candidate phylum TM7 are prevalent in acidophilic nitrifying sequencing-batch reactors[J].Microbes and Environments,2014,29(4):353-362.
[23] ZHAO Y Y,PARK H D,PARK J H,et al.Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor[J].Bioresource Technology,2016,216(9):808-816.
[24] WANG J W,LI S H,GUO S R,et al.Analysis of heat transfer properties of hollow block wall filled by different materials in solar greenhouse[J].Engineering in Agriculture,Environment and Food,2017,10(1):31-38.
[25] LARSEN P,NIELSEN J N,OTZEN D,et al.Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge[J].Applied and Environmental Microbiology,2008,74(5):1517-1526.
[26] 闾刚,李田,徐乐中,等,基于不同接种污泥重复合型厌氧氨氧化反应器的快速启动特征[J].环境科学,2017,38(10):4324-4331.
[27] 马思佳,顾卓江,丁丽丽,等.碳源对活性污泥微生物细胞膜特性和群落结构影响[J].微生物学通报,2017,44(3):561-573.
[28] HEMP J,WARD L M,PACE L A,et al.Draft genome sequence of levilinea saccharolytica KIBI-1,a member of the chloroflexi class anaerolineae[J].Genome Announcements,2015,3(6):e01357.
[29] CHEN H,LI A,CUI C W,et al.AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading[J].Environment International,2019,130(9):104946.
[30] LEIN M,DERONDE B M,SGOLASTRA F,et al.Protein transport across membranes:comparison between lysine and guanidinium-rich carriers[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,2015,1848(11):2980-2984.
[1] XIE Qiuli,TANG Yujuan, SU Houren, LI Guangwei, LI Liangbo,WEI Jiguang, HUANG Rongshao. Variation Microbial Biomass and Enzyme Activities in the RhizosphereSoil of the Different Plant Ages of Panax notoginseng [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 149-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Research on Generalized Sychronization of Fractional-order PMSM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 14 -20 .
[2] ZHU Yongjian, LUO Jian, QIN Yunbai, QIN Guofeng, TANG Chuliu. A Method for Detecting Metal Surface Defects Based on Photometric Stereo and Series Expansion Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 21 -31 .
[3] YANG Liting, LIU Xuecong, FAN Penglai, ZHOU Qihai. Research Progress in Vocal Communication of Nonhuman Primates in China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 1 -9 .
[4] BIN Shiyu, LIAO Fang, DU Xuesong, XU Yilan, WANG Xin, WU Xia, LIN Yong. Research Progress on Cold Tolerance of Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 10 -16 .
[5] LIU Jing, BIAN Xun. Characteristics of the Orthoptera Mitogenome and Its Application[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 17 -28 .
[6] LI Xingkang, ZHONG Enzhu, CUI Chunyan, ZHOU Jia, LI Xiaoping, GUAN Zhenhua. Monitoring Singing Behavior of Western Black Crested Gibbon (Nomascus concolor furvogaster)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 29 -37 .
[7] HE Xinming, XIA Wancai, BA Sang, LONG Xiaobin, LAI Jiandong, YANG Chan, WANG Fan, LI Dayong. Grooming Strategies of Resident Males with Different Number of Mates in Yunnan Snub-nosed Monkeys (Rhinopithecus bieti)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 38 -44 .
[8] FU Wen, REN Baoping, LIN Jianzhong, LUAN Ke, WANG Pengcheng, WANG Bing, LI Dayong, ZHOU Qihai. Jiyuan Taihang Mountain Macaque Population and Conservation Status[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 45 -52 .
[9] ZHENG Jingjin, LIANG Jipeng, ZHANG Kechu, HUANG Aimian, LU Qian, LI Youbang, HUANG Zhonghao. White-headed Langurs Select Foods Based on Woody Plants' Dominances[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 53 -64 .
[10] YANG Chan, WAN Yaqiong, HUANG Xiaofu, YUAN Xudong, ZHOU Hongyan, FANG Haocun, LI Dayong, LI Jiaqi. Activity Rhythm of Muntiacus reevesi Based on Infrared Camera Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 65 -70 .