Journal of Guangxi Normal University(Natural Science Edition) ›› 2012, Vol. 30 ›› Issue (2): 54-58.

Previous Articles     Next Articles

Tetravalent Connected Half-transitive Graphs of Order qp2

XU Shang-jin1, ZHANG Xiao-jun1, KANG Zhe2, LI Jing-jian1   

  1. 1.School of Mathematices and Information Sciences,Guangxi University,Nanning Guangxi 530004,China;
    2.Department of Mathematics and Physics Medical,College of CAPF,Tianjin 300162,China
  • Received:2012-02-09 Online:2012-06-20 Published:2018-12-03

Abstract: A graph X is said to be a half-transitive graphif its full automorphism group denoted by Aut(X) acts transitively on itsvertex set and edge set,but not on its arc set.In this paper,the connected half-transitive tetravalent graphs of order qp2(q<p and are all odd primes)are proved to be isomorphic to a Normal Cayley graph of a metacyclic group,and the graph is also isomorphic to some tightly attached graph.For the automorphism of such graphs,its order and solvability are determined finally.

Key words: Cayley graph, half-transitive graph, full automorphism group, tightly attached graphs

CLC Number: 

  • O157
[1] MARUSIČ D.Half-transitive groups actions on finite graphs of valency 4[J].J Combin Theory:B,1998,73(1):41-76.
[2] SPARL P.A classification of tightly attachedhalf-arc-tiansitive graphs of valency 4[J].J Combin Theory:B,2008,98(5):1076-1108.
[3] BOUWER I Z.Vertex and edge-transitive,but not 1-transitive,graphs[J].Canad Math Bull,1970,13(2):231-237.
[4] ALSPACH B,XU Ming-yao.1/2-transitive graphs of order 3
p[J].J Algebraic Combin,1994,3(4):347-355.
[5] WANG Ru-ji.Half-transitive graphs of order a product of two distinct primes[J].Commun Algebra,1994,22(3):915-927.
[6] WANG Xiu-yun,FENG Yan-quan.Hexavalent half-arc-transitivity graphs of order 4
p[J].European J Combin,2009,30(5):1263-1270.
[7] XU Ming-yao.Half-transitive graphs of prime-cube order[J].Journal of Algebraic Combinatorics,1992,1(3):275-282.
[8] 徐明曜.关于半传递图的若干新结果[J].数学进展,1994,23(6):505-516.
[9] FENG Yan-quan,WANG Kai-shun,ZHOU Chui-xiang.Tetravalent half-transitive graphs of order 4
p[J].European J Combin,2007,28(3):726-733.
[10] FENG Yan-quan,KWAK J H,ZHOU Chui-xiang.Constructing even radius tightly attached half-arc-transitive gra-phs of valency four[J].J Algebraic Combin,2007,26(4):431-451.
[11] DU Shao-fei,WANG Ru-ji,XU Ming-yao.On the normality of Cayley digraphs of groups of order twice a prime[J].Australas J Combin,1998,18:227-234.
[12] 徐尚进,郭松涛,王丽,等.
3p2阶连通4度Cayley图的正规性[J].广西师范大学学报:自然科学版,2009,27(2):30-33.
[13] 徐明曜.有限群导引:上,下册[M].北京:科学出版社,1999.
[14] GORENSTEIN D.Finite simple groups[M].New York:Plenum Press,1982:12-14.
[15] MARUšIČ D,PRAEGER C E.Tetravalent graphs admitting half-transitive group action:alternating cycles[J].J Combin Theory:B,1999,75(2):188-205.
[16] 王磊.半传递图与弧传递图[D].南宁:广西大学数学与信息科学学院,2011.
[1] LI Jingjian, ZHU Wenying, XIE Yating. One-Regular Cayley Graphs of Valency Odd Prime [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 121-125.
[2] HUA Xiao-hui, CHEN Li. Isomorphisms and Automorphisms of Coset Graphs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 68-72.
[3] XU Shang-Jin, LI Ping-shan, HUANG Hai-hua, LI Jing-jian. 8-Valent 1-Regular Cayley Graphs WhoseVertex Stabilizer is Z4×Z2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 59-66.
[4] XU Shang-Jin, QIN Yan-li, ZHANG Yue-feng, LI Jing-jian. 1-Regular Cayley Graphs of Valency 9 with Elementary Abelian Vertex Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 66-71.
[5] LI Jing-jian, XU Shang-jin, WANG Rui. 1-Regular Hexavalent Cayley Graphs with Abelian Point Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 51-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!