Journal of Guangxi Normal University(Natural Science Edition) ›› 2012, Vol. 30 ›› Issue (2): 54-58.
Previous Articles Next Articles
XU Shang-jin1, ZHANG Xiao-jun1, KANG Zhe2, LI Jing-jian1
CLC Number:
[1] MARUSIČ D.Half-transitive groups actions on finite graphs of valency 4[J].J Combin Theory:B,1998,73(1):41-76. [2] SPARL P.A classification of tightly attachedhalf-arc-tiansitive graphs of valency 4[J].J Combin Theory:B,2008,98(5):1076-1108. [3] BOUWER I Z.Vertex and edge-transitive,but not 1-transitive,graphs[J].Canad Math Bull,1970,13(2):231-237. [4] ALSPACH B,XU Ming-yao.1/2-transitive graphs of order 3p[J].J Algebraic Combin,1994,3(4):347-355. [5] WANG Ru-ji.Half-transitive graphs of order a product of two distinct primes[J].Commun Algebra,1994,22(3):915-927. [6] WANG Xiu-yun,FENG Yan-quan.Hexavalent half-arc-transitivity graphs of order 4p[J].European J Combin,2009,30(5):1263-1270. [7] XU Ming-yao.Half-transitive graphs of prime-cube order[J].Journal of Algebraic Combinatorics,1992,1(3):275-282. [8] 徐明曜.关于半传递图的若干新结果[J].数学进展,1994,23(6):505-516. [9] FENG Yan-quan,WANG Kai-shun,ZHOU Chui-xiang.Tetravalent half-transitive graphs of order 4p[J].European J Combin,2007,28(3):726-733. [10] FENG Yan-quan,KWAK J H,ZHOU Chui-xiang.Constructing even radius tightly attached half-arc-transitive gra-phs of valency four[J].J Algebraic Combin,2007,26(4):431-451. [11] DU Shao-fei,WANG Ru-ji,XU Ming-yao.On the normality of Cayley digraphs of groups of order twice a prime[J].Australas J Combin,1998,18:227-234. [12] 徐尚进,郭松涛,王丽,等.3p2阶连通4度Cayley图的正规性[J].广西师范大学学报:自然科学版,2009,27(2):30-33. [13] 徐明曜.有限群导引:上,下册[M].北京:科学出版社,1999. [14] GORENSTEIN D.Finite simple groups[M].New York:Plenum Press,1982:12-14. [15] MARUšIČ D,PRAEGER C E.Tetravalent graphs admitting half-transitive group action:alternating cycles[J].J Combin Theory:B,1999,75(2):188-205. [16] 王磊.半传递图与弧传递图[D].南宁:广西大学数学与信息科学学院,2011. |
[1] | LI Jingjian, ZHU Wenying, XIE Yating. One-Regular Cayley Graphs of Valency Odd Prime [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 121-125. |
[2] | HUA Xiao-hui, CHEN Li. Isomorphisms and Automorphisms of Coset Graphs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 68-72. |
[3] | XU Shang-Jin, LI Ping-shan, HUANG Hai-hua, LI Jing-jian. 8-Valent 1-Regular Cayley Graphs WhoseVertex Stabilizer is Z4×Z2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 59-66. |
[4] | XU Shang-Jin, QIN Yan-li, ZHANG Yue-feng, LI Jing-jian. 1-Regular Cayley Graphs of Valency 9 with Elementary Abelian Vertex Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 66-71. |
[5] | LI Jing-jian, XU Shang-jin, WANG Rui. 1-Regular Hexavalent Cayley Graphs with Abelian Point Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 51-54. |
|