Journal of Guangxi Normal University(Natural Science Edition) ›› 2012, Vol. 30 ›› Issue (2): 42-47.
Previous Articles Next Articles
HAO Ping-ping, FENG Chun-hua
CLC Number:
[1] KULENOVIC M R S,LADAS G,SFICAS Y G.Global attractivity in Nicholson's blowflies[J].Appl Anal,1992,43(1/2):109-124. [2] SO J W,YU J S.Global attractivity and uniform persistence in Nicholson's blowflies[J].Diff Eqns Dynam Syst,1994,2(1):11-18. [3] LI Wan-tong,FAN Yong-hong.Existence and global attractivity ofpositive periodic solutions for the impulsive delay Nicholson's blowflies model[J].J Comput Appl Math,2007,201(1):55-68. [4] 周刚,时宝,许广山.一类具有脉冲的Nicholson果蝇模型周期解的存在性和全局吸引性[J].山东师范大学学报:自然科学版,2008,23(1):12-15. [5] KULENOVIC M R S,LADAS G.Linearized oscillations in population dynamics[J].Bull Math Biol,1987,49(5):615-627. [6] 罗交晚,刘开宇.广义Nicholson苍蝇模型的全局吸引性[J].湖南大学学报:自然科学版,1996,23(4):13-17. [7] 冯秋香,燕居让.一类Nicholson's blowflies模型的全局吸引性和振动性[J].生物数学学报,2002,17(1):21-26. [8] GYORI I,TROFIMCHUK S.On the existence of rapidly oscillatory solutions in the Nicholson blowflies equation[J].Nonlinear Anal,2002,48(7):1033-1042. [9] SAKER S,AGARWAL S.Oscillation and global attractivity in a periodic Nicholson's blowflies model[J].Math Comput Model,2002,35(7/8):719-731. [10] 王晓,李志祥.含扩散项的多时滞Nicholson苍蝇模型的振动性[J].高校应用数学学报:A辑,2005,20(3):265-274. [11] 黄祖达.一类具有非线性死亡率的时滞Nicholson飞蝇方程的持久性[J].四川师范大学学报:自然科学版,2012,35(1):86-88. [12] LIU Bing-wen.Global stability of a class of Nicholson's blowflies model with patch structure and multiple time-varying delays[J].Nonlinear Analysis:Real World Applications,2010,11(4):2557-2562. [13] LI Jing-wen,DU Chao-xiong.Existence of positive periodic solutions for a generalized Nicholson's blowflies model[J].J Comput Appl Math,2008,221(1):226-233. [14] LI Wan-tong,FAN Yong-hong.Existence and global attractivity of positive periodic solutions for the impulsive delay Nicholson's blowflies model[J].J Comput Appl Math,2007,201(1):55-68. [15] CHEN Wei,LIU Bing-wen.Positive almost periodic solution for aclass ofNicholson's blowflies model with multiple time-varying delays[J].J ComputAppl Math,2011,235(8):2090-2097. [16] ALZABUT J O.Almost periodic solutions for an impulsive delay Nicholson's blowflies model[J].J Comput Appl Math,2010,234(1):233-239. [17] WEI Jan-jie,LI M Y.Hopf bifurcation analysis in a delayed Nicholson blowflies equation[J].Nonlinear Analysis:Theory,Methods and Applications,2005,60(7):1351-1367. [18] SU Ying,WEI Jun-jie,SHI Jun-ping.Bifurcation analysis in a delayed diffusive Nicholson's blowflies equation[J].Nonlinear Analysis:Real World Applications,2010,11(3):1692-1703. [19] BEREZANSKY L,BRAVERMAN E,IDELS L.Nicholson's blowflies differential equations revisited:main results and open problems[J].Appl Math Modelling,2010,34(6):1405-1417. |
[1] | ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70. |
[2] | WANG Junjie, WEN Xueyan, XU Kesheng, YU Ming. An Improved Stack Algorithm Based on Local Sensitive Hash [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 21-31. |
[3] | CHEN Xiong, ZHU Yu, FENG Ke, YU Tongwei. Identity Authentication of Power System Safetyand Stability Control Terminals Based on Blockchain [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 8-18. |
[4] | LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45-52. |
[5] | HONG Lingling, YANG Qigui. Research on Complex Dynamics of a New 4D Hyperchaotic System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 96-105. |
[6] | WU Juan, ZHU Hongyang, MEI Ping, CHEN Wu, LI Zhongbao. Polymethyl Methacrylate Modified Nano-Silica and Its Stabilizing Effect on Pickering Emulsion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 120-131. |
[7] | ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26. |
[8] | CHEN Siyu, ZOU Yanli, ZHOU Jian, TAN Huazhen. Study on the Power Allocation of Power Generators and Unbalanced Development of Loadson Power Grids [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 52-59. |
[9] | HAN Huiqing, CAI Guangpeng, YIN Changying, MA Geng, ZHANG Yingjia, LU Yi. Analysis of Landscape Stability in Middle and Upper Reaches of the Wujiang River in 2000 and 2015 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 197-204. |
[10] | MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31. |
[11] | MEI Chuncao, WEI Duqu*, LUO Xiaoshu. Stability Analysis of Inductive Load of Distributed Generation System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 50-55. |
[12] | FENG Jinming,LI Zunxian. Stability Analysis of a Class of Epidemic Model with Diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 63-68. |
[13] | ZHANG Xueliang,TAN Huili, BAI Kezhao, TANG Guoning,DENG Minyi. A Cellular Automaton Model Connected to the ConductionRestitution Property of Cardiac Cells [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 1-9. |
[14] | CHEN Chunyan, XU Zhipeng, KUANG Hua. Modeling and Stability Analysis of Traffic Flow Car-following Modelwith Continuous Memory Effect [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 14-21. |
[15] | XING Wei,GAO Jinfang,YAN Qisheng,ZHOU Qihua. An SIQR Epidemic Model with Nonlinear Incidence Rateand Impulsive Vaccination [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 58-65. |
|