Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 64-74.doi: 10.16088/j.issn.1001-6600.2024071802

• Physics and Electronic Engineering • Previous Articles     Next Articles

Transient Stability Preventive Control Method Based on Deep Extreme Learning Machine

LIU Songkai1,2, ZENG Yucong1,2, ZHANG Lei1,2*, LI Yanzhang3, WANG Qiujie1,2, LIU Longcheng1,2, CHEN Ping1,2, ZHAO Wenbo1,2   

  1. 1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang Hubei 443002, China;
    2. Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Yichang Hubei 443002, China;
    3. Wuhan Power Supply Company of State Grid Hubei Electric Power Co., Ltd, Wuhan Hubei 430010, China
  • Received:2024-07-18 Revised:2024-11-04 Online:2025-09-05 Published:2025-08-05

Abstract: In the transient stability prevention and control of power system, the time domain simulation calculation is complex, and there is a problem of sample class imbalance in the system, which affects the performance of machine learning model. To solve these problems, a transient stability prevention and control method based on deep extreme learning machine (DELM) is proposed. Firstly, the oversampling technique is used to deal with the unbalance of sample class. Then, DELM is used to discover the potential information of the balanced data set, and a mapping model between the operating parameters of the power system and the transient stability index is established. The transient stability prediction model based on DELM is introduced in preventive control to replace the transient stability constraint optimal power flow (TSCOPF) model containing differential algebraic equations with transient stability constraints, the computational complexity is reduced, and the model is solved by firefly algorithm to obtain the final strategy. Finally, the IEEE 39-node system is simulated and verified. The results show that the proposed preventive control method can improve the transient stability of the system at an optimal adjustment cost of \$2 042, adjust the transient instability to stability, and the calculation time of the firefly algorithm can be controlled within 20 s. This indicates that the transient stability prevention and control method based on DELM proposed in this paper can effectively improve the transient stability of the system, and has a fast calculation speed and good economy.

Key words: transient stability, preventive control, optimal power flow, sample imbalance, deep extreme learning machine, firefly algorithm

CLC Number:  TM712;TP181
[1] 谢培元, 袁文, 刘永刚, 等. 基于主动学习的电力系统暂态稳定评估方法[J]. 电测与仪表, 2021, 58(5): 86-91. DOI: 10.19753/j.issn1001-1390.2021.05.012.
[2] 鲁广明, 张璐路, 马晶, 等. 基于时序特征选择与改进MSPCA算法的电网暂态稳定态势智能评估[J]. 电测与仪表, 2023, 60(6): 125-133. DOI: 10.19753/j.issn1001-1390.2023.06.018.
[3] 焦瑞浩, 王震宇, 王克非, 等. 计及大规模风电并网的交直流电网连锁故障熵特征研究[J]. 电测与仪表, 2021, 58(7): 49-56. DOI: 10.19753/j.issn1001-1390.2021.07.007.
[4] 王杰, 彭志炜, 田宇, 等. 双馈风电机组故障穿越对系统暂态稳定的影响[J]. 电测与仪表, 2021, 58(5): 112-118. DOI: 10.19753/j.issn1001-1390.2021.05.016.
[5] ZENG H T, ZHOU Y Z, GUO Q L, et al. Distributed deep reinforcement learning-based approach for fast preventive control considering transient stability constraints[J]. CSEE Journal of Power and Energy Systems, 2023, 9(1): 197-208. DOI: 10.17775/CSEEJPES.2020.04610.
[6] 杨跃, 刘友波, 刘俊勇, 等. 基于神经网络预测校核的暂态稳定预防控制[J]. 电网技术, 2018, 42(12): 4076-4084. DOI: 10.13335/j.1000-3673.pst.2018.0421.
[7] 关慧哲, 陈颖, 黄少伟, 等. 基于生成对抗网络的暂态稳定预防控制[J]. 电力系统自动化, 2020, 44(24): 36-43.
[8] KITA H, NISHIYA K I, HASEGAWA J. On-line preventive control for power system transient stability based on the energy function method[J]. Electrical Engineering in Japan, 1991, 111(7): 30-39. DOI: 10.1002/eej.4391110704.
[9] 夏德明, 梅生伟, 沈沉, 等. 基于暂态稳定裕度指标的最优潮流求解[J]. 电力系统自动化, 2006, 30(24): 5-10. DOI: 10.3321/j.issn:1000-1026.2006.24.002.
[10] 刘明波, 阳曾. 含暂态能量裕度约束多故障最优潮流计算[J]. 中国电机工程学报, 2007, 27(34): 12-18. DOI: 10.3321/j.issn:0258-8013.2007.34.003.
[11] JIANG Q Y, HUANG Z G. An enhanced numerical discretization method for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2010, 25(4): 1790-1797. DOI: 10.1109/TPWRS.2010.2043451.
[12] 孙景强, 房大中, 锺德成. 暂态稳定约束下的最优潮流[J]. 中国电机工程学报, 2005, 25(12): 12-17. DOI: 10.3321/j.issn:0258-8013.2005.12.003.
[13] 阳育德, 韦化, 李滨. 求解暂态稳定约束最优潮流模型的递推降阶解耦算法[J]. 中国电机工程学报, 2015, 35(2): 335-343. DOI: 10.13334/j.0258-8013.pcsee.2015.02.010.
[14] 傅一苇, 陈磊, 马子明, 等. 含数据驱动型稳定约束的电力系统预防控制[J]. 中国电机工程学报, 2022, 42(15): 5417-5430. DOI: 10.13334/j.0258-8013.pcsee.213161.
[15] LIU C X, SUN K, RATHER Z H, et al. A systematic approach for dynamic security assessment and the corresponding preventive control scheme based on decision trees[C]// 2014 IEEE PES General Meeting | Conference & Exposition. Piscataway, NJ: IEEE, 2014: 1. DOI: 10.1109/PESGM.2014.6938856.
[16] TIAN F, ZHOU X X, YU Z H, et al. A preventive transient stability control method based on support vector machine[J]. Electric Power Systems Research, 2019, 170: 286-293. DOI: 10.1016/j.epsr.2019.01.030.
[17] 田芳, 周孝信, 史东宇, 等. 基于卷积神经网络的电力系统暂态稳定预防控制方法[J]. 电力系统保护与控制, 2020, 48(18): 1-8. DOI: 10.19783/j.cnki.pspc.191310.
[18] 潘晓杰, 徐友平, 解治军, 等. 堆栈式集成学习驱动的电力系统暂态稳定预防控制优化方法[J]. 发电技术, 2023, 44(6): 865-874.
[19] LIU T J, LIU Y B, LIU J Y, et al. A Bayesian learning based scheme for online dynamic security assessment and preventive control[J]. IEEE Transactions on Power Systems, 2020, 35(5): 4088-4099. DOI: 10.1109/TPWRS.2020.2983477.
[20] 苏童, 刘友波, 沈晓东, 等. 深度学习驱动的电力系统暂态稳定预防控制进化算法[J]. 中国电机工程学报, 2020, 40(12): 3813-3824. DOI: 10.13334/j.0258-8013.pcsee.191114.
[21] 卢锦玲, 张津. 考虑暂态稳定约束的电力系统最优潮流算法[J]. 电力系统保护与控制, 2017, 45(10): 24-30. DOI: 10.7667/PSPC160754.
[22] 杨健, 韦化, 覃秀君. 基于二阶正交配置法的暂态稳定约束最优潮流[J]. 中国电机工程学报, 2017, 37(1): 64-73. DOI: 10.13334/j.0258-8013.pcsee.151451.
[23] 田芳, 周孝信, 于之虹. 基于灵敏度分析和时域仿真的暂态稳定预防控制优化方法[J]. 电力自动化设备, 2018, 38(7): 155-161. DOI: 10.16081/j.issn.1006-6047.2018.07.021.
[24] 蒋仲安, 王佩, 施蕾蕾, 等. 基于低偏差序列的矿井供水管网可靠性[J]. 中南大学学报(自然科学版), 2014, 45(5):1686-1691. DOI:10.3969/j.issn.1003-6059.2011.02.007.
[25] 魏洁. 深度极限学习机的研究与应用[D]. 太原: 太原理工大学, 2016.
[1] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100.
[2] XU Lunhui, CHEN Kaixun. Prediction of Road Network Speed Distribution Based on BP Neural Network Optimization by Improved Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 1-8.
[3] PENG Xinjian, WENG Xiaoxiong. Bus Travel Time Prediction Based on BP Neural Network Optimized by Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 28-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[2] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1 -8 .
[3] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[4] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .