Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 114-129.doi: 10.16088/j.issn.1001-6600.2024110101

• Intelligence Information Processing • Previous Articles     Next Articles

Facial Acne Detection for Small Object Based on Improved YOLOv8s

LIU Tinghan1, LIANG Yan1, HUANG Pengsheng2,3, BI Jinjie1, HUANG Shoulin1*, LI Tinghui1   

  1. 1. School of Electronic and Information Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. School of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    3. Beijing Meiyi Institute of Medical Technology Co., Ltd., Beijing 100085, China
  • Received:2024-11-01 Revised:2025-03-06 Online:2025-09-05 Published:2025-08-05

Abstract: Automated facial acne detection is crucial for precise clinical diagnosis and treatment. However, existing methods still suffer from significant issues of missed detection and false detection of small acne targets. For more accurate acne detection, an enhanced YOLOv8s method with two key modifications is proposed in this paper. Firstly, the original backbone network of YOLOv8s is improved into a hybrid backbone network that integrates with Transformer. This improvement effectively combines the advantages of convolutional neural network capturing local detail information and Transformers maintaining global feature information, significantly enhancing the feature extraction and representation capabilities for small acne objects. Secondly, a multi-scale channel attention module is integrated into the neck network, enabling adaptive feature weight adjustment through cross-scale context aggregation, thereby mitigating semantic-scale inconsistency. Experiments on both public and self-built facial acne datasets demonstrate that, compared with the current state-of-the-art DSDH method, the proposed method achieves mAP improvements of 1.20% and 5.24% on respective datasets, with corresponding detection speed increases of 46.3 and 47.6 frame/s.

Key words: facial acne, YOLOv8s, small object detection, Transformer, multi-scale feature fusion

CLC Number:  TP391.41
[1] ZAENGLEIN A L. Acne vulgaris[J]. The New England Journal of Medicine, 2018, 379(14): 1343-1352. DOI: 10.1056/NEJMcp1702493.
[2] 张瓅丹, 徐济达, 何源. 中学生和大学生痤疮患者焦虑与抑郁状况[J]. 中国学校卫生, 2020, 41(4): 531-534. DOI: 10.16835/j.cnki.1000-9817.2020.04.014.
[3] 杜耀武, 寇鹏涛. 青春期痤疮患者抑郁状况的观察[J]. 国际精神病学杂志, 2019, 46(6): 1092-1094. DOI: 10.13479/j.cnki.jip.2019.06.040.
[4] 鞠强. 中国痤疮治疗指南(2019修订版)[J]. 临床皮肤科杂志, 2019, 48(9): 583-588. DOI: 10.16761/j.cnki.1000-4963.2019.09.020.
[5] 陈名华, 刘本, 蓝雨, 等. AI计算机辅助对1013例痤疮患者面部皮损识别及分级检测[J]. 皮肤病与性病, 2024, 46(1): 44-47. DOI: 10.3969/j.issn.1002-1310.2024.01.011.
[6] HENG A H S, CHEW F T. Systematic review of the epidemiology of acne vulgaris[J]. ScientificReports, 2020, 10(1): 5754. DOI: 10.1038/s41598-020-62715-3.
[7] CHANTHARAPHAICHI T, UYYANONVARA B, SINTHANAYOTHIN C, et al. Automatic acne detection for medical treatment[C]// 2015 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). Piscataway, NJ: IEEE, 2015: 1-6. DOI: 10.1109/ICTEmSys.2015.7110813.
[8] KITTIGUL N, UYYANONVARA B. Automatic acne detection system for medical treatment progress report[C]// 2016 7th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). Piscataway, NJ: IEEE, 2016: 41-44. DOI: 10.1109/ICTEmSys.2016.7467119.
[9] MARONI G, ERMIDORO M, PREVIDI F, et al. Automated detection, extraction and counting of acne lesions for automatic evaluation and tracking of acne severity[C]// 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2017: 1-6. DOI: 10.1109/SSCI.2017.8280925.
[10] WU X P, WEN N, LIANG J, et al. Joint acne image grading and counting via label distribution learning[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 10641-10650. DOI: 10.1109/ICCV.2019.01074.
[11] MIN K, LEE G H, LEE S W.ACNet: mask-aware attention with dynamic context enhancement for robust acne detection[C]// 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway, NJ: IEEE, 2021: 2724-2729. DOI: 10.1109/SMC52423.2021.9659243.
[12] ZHANG J W, ZHANG L, WANG J Y, et al. SA-RPN: a spacial aware region proposal network for acne detection[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(11): 5439-5448. DOI: 10.1109/JBHI.2023.3304727.
[13] WEI X, ZHANG L, ZHANG J W, et al. Decoupled sequential detection head for accurate acne detection[J]. Knowledge-Based Systems, 2024, 284: 111305. DOI: 10.1016/j.knosys.2023.111305.
[14] LIU Y, SUN P, WERGELES N, et al. A survey and performance evaluation of deep learning methods for small object detection[J]. Expert Systems with Applications, 2021, 172: 114602. DOI: 10.1016/j.eswa.2021.114602.
[15] CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488. DOI: 10.1109/TPAMI.2023.
3290594.
[16] 潘晓英, 贾凝心, 穆元震, 等. 小目标检测研究综述[J]. 中国图象图形学报, 2023, 28(9): 2587-2615. DOI: 10.11834/jig.220455.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010.
[18] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]// 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Los Alamitos, CA: IEEE Computer Society, 2021: 3559-3568. DOI: 10.1109/WACV48630.2021.00360.
[19] GONG H, MU T K, LI Q X, et al. Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images[J]. Remote Sensing, 2022, 14(12): 2861. DOI: 10.3390/rs14122861.
[20] DUBEY S, OLIMOV F, RAFIQUE M A, et al. Improving small objects detection using transformer[J]. Journal of Visual Communication and Image Representation, 2022, 89: 103620. DOI: 10.1016/j.jvcir.2022.103620.
[21] 徐守坤, 顾佳楠, 庄丽华, 等. 基于两阶段计算Transformer的小目标检测[J]. 计算机科学与探索, 2023, 17(12): 2967-2983. DOI: 10.3778/j.issn.1673-9418.2210120.
[22] 孔祥苏, 左付超, 赵新赢, 等. 基于视觉Transformer的地铁安全门间隙异物检测算法研究[J]. 自动化应用, 2025, 66(2): 29-31. DOI: 10.19769/j.zdhy.2025.02.008.
[23] PENG Z L, HUANG W, GU S Z, et al. Conformer: local features coupling global representations for visual recognition[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 357-366. DOI: 10.1109/ICCV48922.2021.00042.
[24] PENG Z L, GUO Z H, HUANG W, et al. Conformer: local features coupling global representations for recognition and detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9454-9468. DOI: 10.1109/TPAMI.2023.3243048.
[25] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 936-944. DOI: 10.1109/CVPR.2017.106.
[26] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 8759-8768. DOI: 10.1109/CVPR.2018.00913.
[27] KATO S, HOTTA K, HATAKEYAMA Y, et al. Lite-HRNet Plus:fast and accurate facial landmark detection[C]// 2023 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2023: 1500-1504. DOI: 10.1109/ICIP49359.2023.10221969.
[28] CHEN J, MAI H S, LUO L B, et al. Effective feature fusion network in BIFPN for small object detection[C]// 2021 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2021: 699-703. DOI: 10.1109/ICIP42928.2021.9506347.
[29] 陈志旺, 李宗轩, 吕昌昊, 等. 基于HRNet和ASFF的特征融合目标检测算法[J]. 控制与决策, 2024, 39(10): 3207-3215. DOI: 10.13195/j.kzyjc.2023.0852.
[30] HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677. DOI: 10.3390/machines11070677.
[31] 文思予, 张上, 张朝阳, 等. 基于改进YOLOv8s的多尺度检测算法[J]. 现代电子技术, 2024, 47(15): 133-138. DOI: 10.16652/j.issn.1004-373x.2024.15.022.
[32] 曲晨阳, 吕进, 卫策. 基于改进YOLOv8s的无人机目标检测算法[J]. 国外电子测量技术,2024,43(7): 14-23. DOI: 10.19652/j.cnki.femt.2406082.
[33] SUNDARESAN GEETHA A, ALIF M A R, HUSSAIN M, et al. Comparative analysis of YOLOv8 and YOLOv10 in vehicle detection: performance metrics and model efficacy[J]. Vehicles, 2024, 6(3): 1364-1382. DOI: 10.3390/vehicles6030065.
[34] 罗伟, 解威威, 侯凯文, 等. 基于YOLOv8s的道路坑洼检测技术研究[J]. 西部交通科技, 2024(11): 28-30. DOI: 10.13282/j.cnki.wccst.2024.11.009.
[35] XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]// Advances in Neural Information Processing Systems 34 (NeurIPS 2021). Red Hook, NY: Curran Associates Inc., 2021: 12077-12090.
[36] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 13708-13717. DOI: 10.1109/CVPR46437.2021.01350.
[37] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[38] CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498. DOI: 10.1109/TPAMI.2019.2956516.
[39] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]// Computer Vision-ECCV 2018 (LNIP Volume 11218). Cham: Springer, 2018: 765-781. DOI: 10.1007/978-3-030-01264-9_45.
[40] DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 6568-6577. DOI: 10.1109/ICCV.2019.00667.
[41] TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933. DOI: 10.1109/TPAMI.2020.3032166.
[42] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721.
[43] MUHAMMAD M B, YEASIN M. Eigen-CAM: class activation map using principal components[C]// 2020 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2020: 1-7. DOI: 10.1109/IJCNN48605.2020.
9206626.
[44] BOLYA D, FOLEY S, HAYS J, et al.TIDE: a general toolbox for identifying object detection errors[C]// Computer Vision-ECCV 2020 (LNIP Volume 12348). Cham: Springer, 2020: 558-573. DOI: 10.1007/978-3-030-58580-8_33.
[1] YI Jianbing, ZHANG Yuxian, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of 3D Human Pose Estimation Network Based on Spatio-Temporal Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 130-144.
[2] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58-68.
[3] WANG Xuyang, ZHANG Jiayu. Temporal Multimodal Sentiment Analysis with Cross-Modal Augmentation Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 97-107.
[4] ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22-32.
[5] SUN Xu, SHEN Bin, YAN Xin, ZHANG Jinpeng, XU Guangyi. Microblog Opinion Summarization Method Based on Transformer and TextRank [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 96-108.
[6] HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134.
[7] LIN Yue, LIU Tingzhang, HUANG Lirong, XI Xiaoye, PAN Jian. Anomalous State Detection of Power Transformer Basedon Bidirectional KL Distance Clustering Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[2] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1 -8 .
[3] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[4] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .