Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (3): 156-169.doi: 10.16088/j.issn.1001-6600.2024071205

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Multi-scenario Ecosystem Service Assessment of Lijiang River Basin Based on PLUS-InVEST Model

JIA Yanhong1,2,3*, HUANG Junzhong3, WU Chunzhu3, HU Hongwen3   

  1. 1. Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources(Wuhan University), Wuhan Hubei 430070, China;
    3. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2024-07-12 Revised:2024-09-19 Online:2025-05-05 Published:2025-05-14

Abstract: The quantification and assessment of ecosystem services provide critical information for scientific decision-making, which holds significant practical importance for the protection and enhancement of these services as well as the promotion of sustainable regional development. This study focuses on the Lijiang River Basin, uses the PLUS model to predict land use changes and simulate land use structures under natural development scenarios, urban development scenarios, cultivated land protection scenarios, and ecological protection scenarios in 2030. Furthermore, the InVEST model is utilized to evaluate water yield service, carbon storage service, and soil conservation service in the basin for 2010, 2020, and 2030. The conclusions were as follows: 1) Regarding land use dynamics from 2010 to 2020 in the Lijiang River Basin, the construction land and water area were increasing, while the cultivated land, forest land, and grassland areas decreased. In 2030, under multiple scenarios, the land use in the Lijiang River Basin showed a trend of conversion from cultivated land, forest land, and grassland to construction land. The expansion of construction land was evident under both natural development scenarios and urban development scenarios; under the ecological protection scenario, the declining trend of cultivated land, forest land, and grassland areas and the expansion rate of construction land were effectively controlled; the cultivated land protection scenario helps to reduce the conversion of cultivated land to construction land. 2) Concerning ecosystem services between 2010-2020 within the basin’s spatial distribution exhibited marked differences: both water yield and soil conservation demonstrated upward trends whereas carbon storage declined. The central and western parts of the basin were high-value areas for water production, while the northern and eastern parts were concentrated areas for high values of carbon storage and soil conservation. In 2030, under the urban development scenario, water production continued to increase; the differences in development scenarios had a significant impact on carbon sequestration services, and the ecological protection scenario could increase carbon storage; soil conservation services showed an increasing trend year by year and reached their maximum under the natural development scenario. 3) The proliferation of constructed environments correlates positively with enhanced water yield services but negatively impacts on forested regions leading to diminished carbon reserves; additionally, fluctuations observed indicate initial increases followed by subsequent decreases in soil conservation volumes due to construction land expansions alongside reductions in forests/grasslands. Exploring how different ecological-socioeconomic developmental modes affect ecosystem service alterations within the Lijiang River Basin can furnish valuable insights for informed spatial planning regarding land utilization along with comprehensive management practices.

Key words: ecosystem services, multi-scenario simulation, Lijiang River Basin, PLUS model, InVEST model

CLC Number:  X171.1
[1] COSTANZA R, DE GROOT R, BRAAT L, et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go?[J]. Ecosystem Services, 2017, 28(Part A): 1-16. DOI: 10.1016/j.ecoser.2017.09.008.
[2]张沐锋,刘万侠,王健恩,等.基于Clue-S模型的石马河流域东莞段生态系统服务价值变化情景模拟[J].水土保持通报,2021,41(1):152-160. DOI: 10.13961/j.cnki.stbctb.2021.01.022.
[3]欧阳志云,王如松.生态系统服务功能、生态价值与可持续发展[J].世界科技研究与发展,2000,22(5):45-50. DOI: 10.3969/j.issn.1006-6055.2000.05.010.
[4]刘娇.湄潭县土地利用结构变化及其驱动因素研究[J].人民珠江,2019,40(2):51-56. DOI: 10.3969/j.issn.1001-9235.2019.02.008.
[5]RAO A, DAGAR V, SOHAG K, et al. Good for the planet, good for the wallet: the ESG impact on financial performance in India[J]. Finance Research Letters, 2023, 56: 104093. DOI: 10.1016/j.frl.2023.104093.
[6]SAHIN G, CABUK S N, CETIN M. The change detection in coastal settlements using image processing techniques: a case study of Korfez[J]. Environmental Science and Pollution Research, 2022, 29(10): 15172-15187. DOI: 10.1007/s11356-021-16660-x.
[7]HASACH ALBASRI N A R, AL-JAWARI S M, Al-MOSHEREFAWI O J. Prediction of urban spatial changes pattern using Markov chain[J]. Civil Engineering Journal, 2022, 8(4): 710-722. DOI: 10.28991/CEJ-2022-08-04-07.
[8]DEPIETRI Y. Planning for urban green infrastructure: addressing tradeoffs and synergies[J]. Current Opinion in Environmental Sustainability, 2022, 54: 101148. DOI: 10.1016/j.cosust.2021.12.001.
[9]WU C F, LIN Y P, CHIANG L C, et al. Assessing highway’s impacts on landscape patterns and ecosystem services: a case study in Puli Township, Taiwan[J]. Landscape and Urban Planning, 2014, 128: 60-71. DOI: 10.1016/j.landurbplan.2014.04.020.
[10]雷军成,刘纪新,雍凡,等.基于CLUE-S和InVEST模型的五马河流域生态系统服务多情景评估[J].生态与农村环境学报,2017,33(12):1084-1093. DOI: 10.11934/j.issn.1673-4831.2017.12.004.
[11]NIU L N, SHAO Q Q, NING J, et al. Ecological changes and the tradeoff and synergy of ecosystem services in western China[J]. Journal of Geographical Sciences, 2022, 32(6): 1059-1075. DOI: 10.1007/s11442-022-1985-6.
[12]XIAO B Q, BAI X Y, ZHAO C W, et al. Responses of carbon and water use efficiencies to climate and land use changes in China’s karst areas[J]. Journal of Hydrology, 2023, 617(Part A): 128968. DOI: 10.1016/j.jhydrol.2022.128968.
[13]梁保平,马艺芳,陈桂南.桂林市主城区建设用地扩张时空动态特征分析[J].广西师范大学学报(自然科学版),2015,33(4):152-159. DOI: 10.16088/j.issn.1001-6600.2015.04.024.
[14]辛文杰,马姜明,王永琪.基于遥感生态指数的桂林市生态环境质量评价[J].广西师范大学学报(自然科学版),2023,41(1):200-212. DOI: 10.16088/j.issn.1001-6600.2021101004.
[15]李何英,何文,王金叶,等.基于PLSR-FLUS-MarKov模型的生态系统服务价值多情景预测:以漓江流域为例[J/OL].水生态学杂志:1-14[2024-03-21].https://doi.org/10.15928/j.1674-3075.202211210468. DOI: 10.15928/j.1674-3075.202211210468.
[16]LIU Y C, JING Y D, HAN S M. Multi-scenario simulation of land use/land cover change and water yield evaluation coupled with the GMOP-PLUS-InVEST model: a case study of the Nansi Lake Basin in China[J]. Ecological Indicators, 2023, 155: 110926. DOI: 10.1016/j.ecolind.2023.110926.
[17]李贤江,石淑芹,蔡为民,等.基于CA-Markov模型的天津滨海新区土地利用变化模拟[J].广西师范大学学报(自然科学版),2018,36(3):133-143. DOI: 10.16088/j.issn.1001-6600.2018.03.019.
[18]LIANG X, GUAN Q F, CLARKE K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85: 101569. DOI: 10.1016/j.compenvurbsys.2020.101569.
[19]王旭,马伯文,李丹,等.基于FLUS模型的湖北省生态空间多情景模拟预测[J].自然资源学报,2020,35(1):230-242. DOI: 10.31497/zrzyxb.20200119.
[20]ZHAO J, SHAO Z, XIA C Y, et al. Ecosystem services assessment based on land use simulation: a case study in the Heihe River Basin, China[J]. Ecological Indicators, 2022, 143: 109402. DOI: 10.1016/j.ecolind.2022.109402.
[21]钟建军,李林,魏识广,等.漓江流域喀斯特森林土壤碳氮磷储量分布特征及其影响因素[J].水土保持学报,2023,37(6):180-186,193. DOI: 10.13870/j.cnki.stbcxb.2023.06.023.
[22]梁士楚,苑晓霞,卢晓明,等.漓江水陆交错带土壤理化性质及其分布特征[J].生态学报,2019,39(8):2752-2761. DOI: 10.5846/stxb201805091026.
[23]樊千涛,马姜明,于名召,等.漓江流域喀斯特综合干扰评价及其空间特征[J].生态学报,2024,44(4):1404-1417. DOI: 10.20103/j.stxb.202301300146.
[24]朱柏露,杨奇勇,谢运球,等.漓江流域土地石漠化空间分布及驱动因子分析[J].广西师范大学学报(自然科学版),2021,39(3):139-150. DOI: 10.16088/j.issn.1001-6600.2020052702.
[25]覃巧婷.基于Sentinel-1和Sentinel-2的漓江流域地表水体动态变化监测研究[D].桂林:桂林理工大学,2022. DOI: 10.27050/d.cnki.gglgc.2022.000266.
[26]庞彩艳,文琦,丁金梅,等.黄河上游流域生态系统服务变化及其权衡协同关系[J].生态学报,2024,44(12):5003-5013. DOI: 10.20103/j.stxb.202306281376.
[27]WANG Y F, YE A Z, PENG D Z, et al. Spatiotemporal variations in water conservation function of the Tibetan Plateau under climate change based on InVEST model[J]. Journal of Hydrology: Regional Studies, 2022, 41: 101064. DOI: 10.1016/j.ejrh.2022.101064.
[28]JIANG L, WANG Z Z, ZUO Q T, et al. Simulating the impact of land use change on ecosystem services in agricultural production areas with multiple scenarios considering ecosystem service richness[J]. Journal of Cleaner Production, 2023, 397: 136485. DOI: 10.1016/j.jclepro.2023.136485.
[29]朱鹏飞.基于InVEST模型的广西沿海地区土地利用/覆被变化的生态效应研究[D].南宁:广西师范学院,2018.
[30]梁民,陈秀庭,徐庆玲,等.基于InVEST模型的河池市森林碳储量估测研究[J].林业调查规划,2024,49(4):43-50. DOI: 10.3969/j.issn.1671-3168.2024.04.008.
[31]卢雅焱,徐晓亮,李基才,等.基于InVEST模型的新疆天山碳储量时空演变研究[J].干旱区研究,2022,39(6): 1896-1906. DOI: 10.13866/j.azr.2022.06.20.
[32]ANESEYEE A B, ELIAS E, SOROMESSA T, et al. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia[J]. Science of the Total Environment, 2020, 728: 138776. DOI: 10.1016/j.scitotenv.2020.138776.
[33]韩晶,崔金芳,杨威,等.基于InVEST模型的低山丘陵区土壤侵蚀变化与驱动因素分析[J].水土保持研究,2022,29(5):32-39. DOI: 10.13869/j.cnki.rswc.2022.05.024.
[34]王乐志.基于InVEST模型的鄱阳湖流域土壤保持和生境质量变化研究[D].南昌:南昌大学,2021. DOI: 10.27232/d.cnki.gnchu.2021.002401.
[35]许月卿,邵晓梅.基于GIS和RUSLE的土壤侵蚀量计算:以贵州省猫跳河流域为例[J].北京林业大学学报,2006,28(4):67-71. DOI: 10.3321/j.issn:1000-1522.2006.04.013.
[36]欧阳晓,贺清云,朱翔.多情景下模拟城市群土地利用变化对生态系统服务价值的影响:以长株潭城市群为例[J].经济地理,2020,40(1):93-102. DOI: 10.15957/j.cnki.jjdl.2020.01.011.
[37]王保盛,廖江福,祝薇,等.基于历史情景的FLUS模型邻域权重设置:以闽三角城市群2030年土地利用模拟为例[J].生态学报,2019,39(12):4284-4298. DOI: 10.5846/stxb201808021649.
[38]张薇,王凤春,万虹麟,等.基于InVEST模型的土壤保持服务时空变化及其影响因素分析:以密云水库上游流域河北张承地区为例[J].地球物理学进展,2022,37(6):2339-2350. DOI: 10.6038/pg2022GG0067.
[39]何毅,唐湘玲,代俊峰.漓江流域生态系统服务价值最大化的土地利用结构优化[J].生态学报,2021,41(13):5214-5222. DOI: 10.5846/stxb202006201612.
[40]杨帅琦,王金叶,李何英.基于生态系统服务价值的漓江流域生态补偿额度测算[J].水生态学杂志,2024,45(5): 20-28. DOI: 10.15928/j.1674-3075.202207030247.
[41]范耘恺,马书明.多情景模拟土地利用变化下的生态系统服务评估及其权衡/协同研究:以辽宁省沈抚地区为例[J].环境科学学报,2023,43(10):419-434. DOI: 10.13671/j.hjkxxb.2023.0085.
[42]郭洪伟,孙小银,廉丽姝,等.基于CLUE-S和InVEST模型的南四湖流域生态系统产水功能对土地利用变化的响应[J].应用生态学报,2016,27(9):2899-2906. DOI: 10.13287/j.1001-9332.201609.039.
[43]李小军,车良革,胡宝清.FLUS-InVEST模型的北海市生态系统碳储量时空差异分析[J].测绘通报,2023(6):117-123,183. DOI: 10.13474/j.cnki.11-2246.2023.0178.
[44]武爱彬,陈辅国,赵艳霞,等.京津冀城市群建设用地扩张多情景模拟及其对生态系统碳储量的影响[J].环境科学,2024,45(5):2828-2839. DOI: 10.13227/j.hjkx.202305221.
[45]贾艳红,吴春竹,胡洪文,等.基于电路理论的桂林漓江流域生态安全格局构建[J].广西师范大学学报(自然科学版),2024,42(5):201-212. DOI: 10.16088/j.issn.1001-6600.2024030502.
[1] JIN Run, HE Li, LUO Fang, HE Zhengwei, LI Dan, LIN Zhiyu, HUANG Yuna. Spatial and Temporal Evolution and Prediction of Habitat Quality in Fujian Province, 2000-2020 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 170-182.
[2] TAN Yingying, JIANG Yu, ZHOU Shaoqi. Spatio-temporal Evolution of Ecosystem Service Value in Tourist Cities: Taking Guilin City as an Example [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 133-149.
[3] JIA Yanhong, WU Chunzhu, HU Hongwen, HUANG Junzhong , SU Xiaoqian. Construction of Ecological Security Pattern in Lijiang River Basin Based on Circuit Theory [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 201-212.
[4] XIE Ling, CHEN Zhantu, JIANG Yu, XIAO Xiaohui, JIA Yanhong. Habitat Quality Changes and Influencing Factors in Huixian Wetland Based on InVEST&GEO-detectors Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 180-190.
[5] ZHU Bailu, YANG Qiyong, XIE Yunqiu, DENG Yan, TANG Meirong, LIU Dacun, ZENG Hongchun. Spatial Distribution and Driving Factors of Karst Rocky Desertification in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 139-150.
[6] GAO Hongjuan, HAN Huiqing, LUO Xuqiang, LI Jinyan, CHEN Mengling, ZHANG Xinding. Effects of Land Use Change on Freshwater Ecosystem Services in Guizhou, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 157-163.
[7] SU Wen-jing, LU Yuan, CAI De-suo. Spatial Analysis of Hydrological Characteristics for Lijiang River Basin Based on GIS [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 166-171.
[8] HE Dong-yan, HUA Cui, LU Yuan. Ecological Risk Assessment of Land Use in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 172-178.
[9] WANG Xiao-chao, CAI De-suo, ZHU Tie-gang, ZHANGYong-xiang, LIN Hong-jun, WU Da-yong. Ecological Effects of Small Dams on Steam Ecosystems in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 179-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!