Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 244-250.doi: 10.16088/j.issn.1001-6600.2024011101

Previous Articles    

Expression Profiling of Related Genes of Muscle Growth in Mice After Intramuscular Cardiotoxin Injection

CHEN Chun1, ZHANG Ruimen2, MENG Lina3, YANG Yanyan2, WU Chaoquan1, FENG Wanyou2,3*   

  1. 1. Department of Pharmacology, Guangxi Institute for Drug Control, Nanning Guangxi 530029, China;
    2. College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China;
    3. School of Environmental and Life Sciences, Nanning Normal University, Nanning Guangxi 530001, China
  • Received:2024-01-11 Revised:2024-03-06 Online:2024-12-30 Published:2024-12-30

Abstract: In this study, male C57BL/6 mice were used as experimental animals to establish muscle injury model by cardiotoxin (CTX) injection. Structural alterations of skeletal muscle were observed by the HE staining, and the expressions profiling of related genes of skeletal muscle growth and differentiation were detected by real-time quantitative PCR (RT-qPCR), the untreated mice were used as the control. The results revealed that there was significant muscle histologic alteration and tibialis anterior muscle weight-to-length ratio was decreased by the single injection of 50 μL CTX (1 g/L) into the mouse tibialis anterior muscle after 4 days. The expression of related genes for muscle differentiation, MyOD1, MyOG, MYH1, MYH2, AMPK, and mTOR signaling pathway marker genes (PRKAA1, NOTCH1, AKT, PI3K, mTOR) in the tibialis anterior muscle decreased significantly compared with those of the untreated group. This study successfully established the mouse muscle injury model after intramuscular Cardiotoxin injection by morphological examination and detection of related genes expression. The research provided a theoretical basis for molecular regulatory mechanisms for muscle regeneration and treatment methods for muscle injury.

Key words: muscle injury, damaging model, muscle growth, gene expression

CLC Number:  R685; Q819
[1] LI Z D, MCKENNA Z J, KUENNEN M R, et al. The potential role of exercise-induced muscle damage in exertional heat stroke[J]. Sports Medicine, 2021, 51(5): 863-872. DOI: 10.1007/s40279-021-01427-8.
[2] HOPPSTÄDTER J, VALBUENA PEREZ J V, LINNENBERGER R, et al. The glucocorticoid-induced leucine zipper mediates statin-induced muscle damage[J]. FASEB Journal, 2020, 34(3): 4684-4701. DOI: 10.1096/fj.201902557RRR.
[3] AOI W, NAITO Y, YOSHIKAWA T. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage[J]. Free Radical Biology & Medicine, 2013, 65: 1265-1272. DOI: 10.1016/j.freeradbiomed.2013.09.014.
[4] FUKADA S I, AKIMOTO T, SOTIROPOULOS A. Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2020, 1867(9): 118742. DOI: 10.1016/j.bbamcr.2020.118742.
[5] LIM K S, LEE S H, LEE E A, et al. Effects of intergenic single nucleotide polymorphisms in the fast myosin heavy chain cluster on muscle fiber characteristics and meat quality in Berkshire pigs[J]. Meat Science, 2015, 110: 224-229. DOI: 10.1016/j.meatsci.2015.07.025.
[6] MURGIA M, NOGARA L, BARALDO M, et al. Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study[J]. Skeletal Muscle, 2021, 11(1): 24. DOI: 10.1186/s13395-021-00279-0.
[7] SELLERS R S, MAHMOOD S R, PERUMAL G S, et al. Phenotypic modulation of skeletal muscle fibers in LPIN1-deficient lipodystrophic (fld) mice[J]. Veterinary Pathology, 2019, 56(2): 322-331. DOI: 10.1177/0300985818809126.
[8] AHN J S, KIM D H, PARK H B, et al. Ectopic overexpression of porcine Myh1 increased in slow muscle fibers and enhanced endurance exercise in transgenic mice[J]. International Journal of Molecular Sciences, 2018, 19(10): 2959. DOI: 10.3390/ijms19102959.
[9] DE PAEPE B. Progressive skeletal muscle atrophy in muscular dystrophies: a role for toll-like receptor-signaling in disease pathogenesis[J]. International Journal of Molecular Sciences, 2020, 21(12): 4440. DOI: 10.3390/ijms21124440.
[10] ZHANG H, LI Y, SU W P, et al. Resveratrol attenuates mitochondrial dysfunction in the liver of intrauterine growth retarded suckling piglets by improving mitochondrial biogenesis and redox status[J]. Molecular Nutrition & Food Research, 2017, 61(5): 1600653. DOI: 10.1002/mnfr.201600653.
[11] WEN W X, CHEN X L, HUANG Z Q, et al. Resveratrol regulates muscle fiber type conversion via miR-22-3p and AMPK/SIRT1/PGC-1α pathway[J]. The Journal of Nutritional Biochemistry, 2020, 77: 108297. DOI: 10.1016/j.jnutbio.2019.108297.
[12] LI P Y, ZHANG S, SONG H, et al. Naringin promotes skeletal muscle fiber remodeling by the AdipoR1-APPL1-AMPK signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2021, 69(40): 11890-11899. DOI: 10.1021/acs.jafc.1c04481.
[13] ZHANG H F, SHANG R J, BI P P. Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis[J]. PLoS Genetics, 2021, 17(8): e1009729. DOI: 10.1371/journal.pgen.1009729.
[14] OH M, KIM S Y, PARK S, et al. Phytochemicals in Chinese chive (Allium tuberosum) induce the skeletal muscle cell proliferation via PI3K/Akt/mTOR and Smad pathways in C2C12 cells[J]. International Journal of Molecular Sciences, 2021, 22(5): 2296. DOI: 10.3390/ijms22052296.
[15] TANG G, DU Y, GUAN H C, et al. Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals[J]. British Journal of Pharmacology, 2022, 179(1): 159-178. DOI: 10.1111/bph.15693.
[16] WANG M Q, HU R, WANG Y J, et al. Atractylenolide III attenuates muscle wasting in chronic kidney disease via the oxidative stress-mediated PI3K/AKT/mTOR pathway[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 1875471. DOI: 10.1155/2019/1875471.
[17] SUÁREZ-CALVET X, ALONSO-PÉREZ J, CASTELLVÍ I, et al. Thrombospondin-1 mediates muscle damage in brachio-cervical inflammatory myopathy and systemic sclerosis[J]. Neurology(R) Neuroimmunology & Neuroinflammation, 2020, 7(3): e694. DOI: 10.1212/nxi.0000000000000694.
[18] DOMA K, RAMACHANDRAN A K, BOULLOSA D, et al. The paradoxical effect of creatine monohydrate on muscle damage markers: a systematic review and meta-analysis[J]. Sports Medicine, 2022, 52(7): 1623-1645. DOI: 10.1007/s40279-022-01640-z.
[19] TSUCHIYA Y, KITAJIMA Y, MASUMOTO H, et al. Damaged myofiber-derived metabolic enzymes act as activators of muscle satellite cells[J]. Stem Cell Reports, 2020, 15(4): 926-940. DOI: 10.1016/j.stemcr.2020.08.002.
[20] 宋刚,唐晖,谢敏豪.跑台运动和饮食干预对不同肌纤维肌糖原的影响[J].广西师范大学学报(自然科学版),2009,27(1):88-91.DOI:10.3969/j.issn.1001-6600.2009.01.023.
[21] ZHANG R M, PAN Y, FENG W Y, et al. HDAC11 regulates the proliferation of bovine muscle stem cells through the notch signaling pathway and inhibits muscle regeneration[J]. Journal of Agricultural and Food Chemistry, 2022, 70(29): 9166-9178. DOI: 10.1021/acs.jafc.2c03384.
[22] 王开卓,宾石玉,李虹辉,等.翘嘴鳜生长抑制素基因的克隆及其表达分析[J].广西师范大学学报(自然科学版),2013,31(4):109-114.DOI: 10.3969/j.issn.1001-6600.2013.04.020.
[23] RENZINI A, MARRONCELLI N, CAVIOLI G, et al. Cytoplasmic HDAC4 regulates the membrane repair mechanism in Duchenne muscular dystrophy[J]. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13(2): 1339-1359. DOI: 10.1002/jcsm.12891.
[24] ZÚÑIGA-MUÑOZ A, GARCÍA-NIÑO W R, CARBÓ R, et al. The regulation of protein acetylation influences the redox homeostasis to protect the heart[J]. Life Sciences, 2021, 277: 119599. DOI: 10.1016/j.lfs.2021.119599.
[25] SIKORSKA M, DUTKIEWICZ M, ZEGROCKA-STENDEL O, et al. Beneficial effects of β-escin on muscle regeneration in rat model of skeletal muscle injury[J]. Phytomedicine, 2021, 93: 153791. DOI: 10.1016/j.phymed.2021.153791.
[26] SCHIAFFINO S. Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies[J]. The FEBS Journal, 2018, 285(20): 3688-3694. DOI: 10.1111/febs.14502.
[27] CHEN R, LEI S, JIANG T, et al. Roles of lncRNAs and circRNAs in regulating skeletal muscle development[J]. Acta Physiologica, 2020, 228(2): e13356. DOI: 10.1111/apha.13356.
[28] DOS SANTOS M, BACKER S, AURADÉ F, et al. A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes[J]. Nature Communications, 2022, 13(1): 1039. DOI: 10.1038/s41467-022-28666-1.
[1] LUO Honglin, FENG Pengfei, YU Yanling, XIAO Rui, PAN Chuanyan, SONG Manling, ZHANG Yongde. Molecular Cloning of the Myostatin Gene and Its Expression During Embryo Development of Trachinotus ovatus [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 136-147.
[2] WANG Jianhua, LI Yulong, CHEN Dunxue, ZHU Xin, LIU Zhixing, ZHANG Jianshe, CHU Wuying, BIN Shiyu. Effect of Starvating and Refeeding on Relative Expression of FSRP-1,FSRP-3 and PepT1 Gene in Mandarin Fish (Siniperca chuatsi) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 144-149.
[3] GUO Yan-ju, PENG Feng-lin. Effects of Flavones on Antioxidant Enzymes and Apoptosis in Heart of Exhauted Exercise Rats [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 143-148.
[4] CHEN You-ying, ZHENG Zhi, KONG Xiang-zeng, ZHANG Sheng-yuan. Classification of Colon Cancer Data Based on Bayesian Classifier [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 187-191.
[5] WANG Yan, YUAN Chang-an, LIU Fu-tian. Constructing Decision Tree Attribution Reduction Algorithms withGene Expression Programming Based on Information Gain [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 113-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .