Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 164-176.doi: 10.16088/j.issn.1001-6600.2024020302
Previous Articles Next Articles
CAO Feng*, WANG Jiafan, YI Jianbing, LI Jun
| [1] ROBINSON J A. A machine-oriented logic based on the resolution principle[J]. Journal of the ACM, 1965, 12(1): 23-41. DOI: 10.1145/321250.321253. [2] SUTCLIFFE G. The TPTP problem library and associated infrastructure: from CNF to TH0, TPTP v6.4.0[J]. Journal of Automated Reasoning, 2017, 59(4): 483-502. DOI: 10.1007/s10817-017-9407-7. [3] KOVÁCS L. Symbolic computation and automated reasoning for program analysis[C] // Integrated Formal Methods: LNCS Volume 9681. Cham: Springer, 2016: 20-27. DOI: 10.1007/978-3-319-33693-0_2. [4] XU Y, LIU J, CHEN S W, et al. Contradiction separation based dynamic multi-clause synergized automated deduction[J]. Information Sciences, 2018, 462: 93-113. DOI: 10.1016/j.ins.2018.04.086. [5] XU Y,LIU J, CHEN S W, et al. A novel generalization of resolution principle for automated deduction[C] // Uncertainty Modelling in Knowledge Engineering and Decision Making: Proceedings of the 12th International FLINS Conference. Singapore: World Scientific Publishing Co. Pte. Ltd., 2016: 483-488. DOI: 10.1142/9789813146976_0078. [6] 曾国艳, 徐扬, 陈树伟, 等. 基于多属性决策的一阶逻辑子句选择方法[J/OL]. 西南交通大学学报[2024-02-03]. https://link.cnki.net/urlid/51.1277.U.20230901.1529.011. [7] CAO F, XU Y, ZHONG J, et al. Holistic deductive framework theorem proving based on standard contradiction separation for first-order logic[C] // 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). Piscataway, NJ: IEEE, 2017: 1-5. DOI: 10.1109/ISKE.2017.8258782. [8] 钟建, 徐扬, 陈树伟, 等. 一阶逻辑中基于稳定度的项评估方法[J]. 计算机工程, 2019, 45(11): 183-190, 197. DOI: 10.19678/j.issn.1000-3428.0054368. [9] 林玲瑜, 曹锋, 易见兵, 等. 基于子句活跃度和复杂度的多元动态演绎算法及应用[J]. 计算机工程与科学, 2023, 45(12): 2256-2264. DOI: 10.3969/j.issn.1007-130X.2023.12.017. [10] 曹锋, 郭海林, 易见兵, 等. 基于矛盾体分离的多元冲突演绎方法及应用[J/OL]. 武汉大学学报(理学版)[2024-02-03]. https://doi.org/10.14188/j.1671-8836.2023.0181. [11] 曹锋, 潘世成, 易见兵, 等. 子句充分性评估的多元动态演绎算法及应用[J]. 华中科技大学学报(自然科学版),2024,52(11):153-160. DOI: 10.13245/j.hust.240468. [12] GROZA A. Getting Started with Prover9 and Mace4[M] // GROZA A。 Modelling Puzzles in First Order Logic. Cham: Springer, 2021: 1-9. DOI: 10.1007/978-3-030-62547-4_1. [13] SCHULZ S. System description: E 1.8[C] // Logic for Programming Artificial Intelligence and Reasoning. Berlin: Springer-Verlag, 2013: 735-743. DOI: 10.1007/978-3-642-45221-5_49. [14] SCHULZ S,CRUANES S,VUKMIROVIĆ P. Faster,higher,stronger:E 2.3[C] // Automated Deduction-CADE 27: LNCS Volume 11716. Cham: Springer, 2019: 495-507. DOI: 10.1007/978-3-030-29436-6_29. [15] 郝娇, 惠小静, 马硕, 等. 一阶逻辑中公理化真度研究[J]. 计算机科学, 2021, 48(11A): 669-671, 712. DOI: 10.11896/jsjkx.210200012. [16] 曹锋, 徐扬, 吴贯锋, 等. 多元动态演绎在Prover9证明器中的应用[J]. 计算机工程与科学, 2019, 41(9): 1686-1692. DOI: 10.3969/j.issn.1007-130X.2019.09.022. [17] 曹锋. 一种基于矛盾体分离演绎的一阶逻辑自动定理证明器研究[D]. 成都: 西南交通大学, 2020. [18] SUTCLIFFE G. The CADE-26 automated theorem proving system competition: CASC-26[J]. AI Communications, 2017, 30(6): 419-432. DOI: 10.3233/AIC-170744. [19] 曹钦翔, 詹博华, 赵永望. 定理证明理论与应用专题前言[J]. 软件学报, 2022, 33(6): 2113-2114. DOI: 10.13328/j.cnki.jos.006582. [20] 孙毅, 陈哲, 冉丹, 等. 一种SCADE同步语言程序安全属性自动验证工具[J]. 小型微型计算机系统, 2022, 43(4): 858-864. DOI: 10.20009/j.cnki.21-1106/TP.2020-0941. [21] XU R Q, LI L M, ZHAN B H. Verified interactive computation of definite integrals[C] // Automated Deduction-CADE 28: LNCS Volume 12699. Cham: Springer, 2021: 485-503. DOI: 10.1007/978-3-030-79876-5_28. |
| [1] | WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47-54. |
|