Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 149-163.doi: 10.16088/j.issn.1001-6600.2024021901

Previous Articles     Next Articles

Research on Power Equipment Defect Question Answering System Based on Knowledge Graph

CHEN Peng1,2, TAI Bin1,2, SHI Ying3*, JIN Yang1,2, KONG Li1,2, XU Ruiwen3, WANG Jinfeng1,2   

  1. 1. Key Laboratory of Power Equipment Reliability Enterprises in Guangdong Province (Electric Power Research Institute of Guangdong Power Grid Co., Ltd.), Guangzhou Guangdong 510080, China;
    2. Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou Guangdong 510080, China;
    3. School of Automation, Wuhan University of Technology, Wuhan Hubei 430070, China
  • Received:2024-02-19 Revised:2024-04-23 Online:2024-12-30 Published:2024-12-30

Abstract: The defect handling work of power equipment mainly depends on the knowledge reserve and experience of the handling personnel. However, due to the lack of assistance of a perfect historical defect knowledge base, people with relatively insufficient experience and knowledge cannot effectively learn from the experience of the predecessors, and it is inevitable that there will be mistakes in decision-making. This situation, which in turn affects the elimination of power equipment. A question answering system implementation method based on power equipment defect knowledge graph is proposed to address the above issues. Firstly, the requirements of the equipment defect question answering system are analyzed, and the system architecture is designed. Then, the question entity recognition model, question intent recognition model, and query sentence generation are established respectively. The model parses the question sentence semantically. Finally, a power equipment defect question answering system is based on the power equipment defect knowledge graph. The results of question entity recognition and question intention recognition show that the indicators of the improved algorithm have been greatly improved. In the aspect of question entity recognition, the precision rate, recall rate and F1 reach 92.34%, 97.65% and 95.36%, respectively. In the aspect of question intention recognition, the accuracy rate, precision rate, recall rate and F1 reach 82.17%, 85.38%, 82.36% and 80.56%, respectively. The function test of the question answering system also shows that the system can be well applied to the defect elimination process of power equipment. And the system can quickly improve the accuracy of defect, repair strategy formulation and the efficiency of defect elimination of defective equipment, and promote the safe and stable operation of the power system.

Key words: question answering system, power equipment, knowledge graph, question entity recognition, question intent recognition, query statement generation

CLC Number:  TP391.1
[1] 张磐, 郑悦, 李海龙, 等. 配电网电力设备缺陷文本智能辨识运维综述[J]. 电力建设, 2022, 43(5): 90-99. DOI: 10.12204/j.issn.1000-7229.2022.05.010.
[2] 王慧芳, 曹靖, 罗麟. 电力文本数据挖掘现状及挑战[J]. 浙江电力, 2019, 38(3): 1-7. DOI: 10.19585/j.zjdl.201903001.
[3] 燕洁, 李娟. 基于电力系统二次设备功能缺陷文本数据的设备智能诊断[J]. 电工技术, 2023(19): 142-144. DOI: 10.19768/j.cnki.dgjs.2023.19.041.
[4] 徐会芳, 张中浩, 谈元鹏, 等. 面向电网调度领域的实体识别技术[J]. 电力建设, 2021, 42(10): 71-77. DOI: 10.12204/j.issn.1000-7229.2021.10.008.
[5] COLLINS M, SINGERY. Unsupervised models for named entity classification[C] // 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. Stroudsburg, PA: Association for Computational Linguistics, 1999: 100-110. DOI: 10.3115/1072228.1072316.
[6] 岑咏华, 韩哲, 季培培. 基于隐马尔科夫模型的中文术语识别研究[J]. 现代图书情报技术, 2008(12): 54-58. DOI: 10.3969/j.issn.1003-3513.2008.12.010.
[7] 王路路, 艾山·吾买尔, 买合木提·买买提, 等. 基于CRF和半监督学习的维吾尔文命名实体识别[J]. 中文信息学报, 2018, 32(11): 16-26, 33. DOI: 10.3969/j.issn.1003-0077.2018.11.003.
[8] 杨秋勇, 彭泽武, 苏华权, 等. 基于Bi-LSTM-CRF的中文电力实体识别[J]. 信息技术, 2021(9): 45-50. DOI: 10.13274/j.cnki.hdzj.2021.09.009.
[9] 王茜. 基于深度学习的电力设备缺陷文本分类方法[D]. 成都: 西南交通大学, 2021.
[10] 方苏婉. 基于深度学习的电力设备缺陷文本命名实体识别模型研究[D]. 北京: 华北电力大学(北京), 2021.
[11] 刘春磊, 武佳琪, 檀亚宁. 基于TextCNN的用户评论情感极性判别[J]. 电子世界, 2019(3): 48,50. DOI: 10.19353/j.cnki.dzsj.2019.03.020.
[12] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. DOI: 10.7544/issn1000-1239.2016.20148228.
[13] HASSANZADEH O, CONSENS M. Linked movie data base[C/OL] // Proceedings of the Linked Data on the Web Workshop(LDOW2009). Aachen, Germany: CEUR-WS.org, 2009[2024-02-19]. http://ceur-ws.org/Vol-538/ldow2009_paper12.pdf.
[14] 刘龙航. 基于多资源的中文医疗知识图谱构建方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[15] WANG C B, MA X G, CHEN J G, et al. Information extraction and knowledge graph construction from geoscience literature[J]. Computers & Geosciences, 2018, 112: 112-120. DOI:10.1016/j.cageo.2017.12.007.
[16] 刘广一, 王继业, 李洋, 等. “电网一张图”时空信息管理系统[J]. 电力信息与通信技术, 2020, 18(1): 7-17. DOI: 10.16543/j.2095-641x.electric.power.ict.2020.01.00.
[17] ZHOU Q Z, NATARAJAN S, SIMMHAN Y, et al. Semantic information modeling for emerging applications in smart grid[C] // 2012 Ninth International Conference on Information Technology: New Generations. Los Alamitos, CA: IEEE Computer Society, 2012: 775-782. DOI: 10.1109/ITNG.2012.150.
[18] 孙宏斌, 黄天恩, 郭庆来, 等. 面向调度决策的智能机器调度员研制与应用[J]. 电网技术, 2020, 44(1): 1-8. DOI: 10.13335/j.1000-3673.pst.2019.1937.
[19] 汤亚宸, 方定江, 韩海韵, 等. 基于图数据库和知识图谱的电力设备质量综合管理系统研究[J]. 供用电, 2019, 36(11): 35-40. DOI: 10.19421/j.cnki.1006-6357.2019.11.005.
[20] 乔骥, 王新迎, 闵睿, 等. 面向电网调度故障处理的知识图谱框架与关键技术初探[J]. 中国电机工程学报, 2020, 40(18): 5837-5848. DOI: 10.13334/j.0258-8013.pcsee.200033.
[21] 王智悦, 于清, 王楠, 等. 基于知识图谱的智能问答研究综述[J]. 计算机工程与应用, 2020, 56(23): 1-11. DOI: 10.3778/j.issn.1002-8331.2004-0370.
[22] 年宇慧. 基于开放世界知识图谱的问答技术研究与实现[D]. 成都: 电子科技大学, 2021.
[23] 孙晟. 电网输变电设备故障问答系统的设计和实现[D]. 北京: 北京邮电大学, 2021. DOI: 10.26969/d.cnki.gbydu.2021.002506.
[24] TANG Y C, LIU T T, LIU G Y, et al. Enhancement of power equipment management using knowledge graph[C] // 2019 IEEE Innovative Smart Grid Technologies: Asia (ISGT Asia). Piscataway, NJ: IEEE, 2019: 905-910. DOI: 10.1109/isgt-asia.2019.8881348.
[25] 闪鑫, 陆晓, 翟明玉, 等. 人工智能应用于电网调控的关键技术分析[J]. 电力系统自动化, 2019, 43(1): 49-57. DOI: 10.7500/AEPS20180629002.
[26] 饶竹一, 张云翔. 基于知识图谱的智能客服系统研究[J]. 电力信息与通信技术, 2017, 15(7): 41-45. DOI: 10.16543/j.2095-641x.electric.power.ict.2017.07.008.
[27] 谭刚, 陈聿, 彭云竹. 融合领域特征知识图谱的电网客服问答系统[J]. 计算机工程与应用, 2020, 56(3): 232-239. DOI: 10.3778/j.issn.1002-8331.1907-0385.
[28] 张毅捷. 基于深度学习的电力一次设备缺陷知识图谱及问答系统[D]. 武汉: 华中师范大学, 2023.
[29] 王宣军, 于虹, 祁兵, 等. 基于注意力机制的混合神经网络电力设备缺陷文本挖掘方法[J]. 电力信息与通信技术, 2023, 21(9): 44-51. DOI: 10.16543/j.2095-641x.electric.power.ict.2023.09.07.
[1] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13-27.
[2] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1-13.
[3] PAN Haiming, CHEN Qingfeng, QIU Jie, HE Naixu, LIU Chunyu, DU Xiaojing. Multi-hop Knowledge Graph Question Answering Based on Convolution Reasoning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 102-112.
[4] LI Zhixin, SU Qiang. Knowledge-aided Image Captioning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 418-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .