Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 164-176.doi: 10.16088/j.issn.1001-6600.2024020302

Previous Articles     Next Articles

A Multi-clause Dynamic Deduction Algorithm Based on Clause Stability and Its Application

CAO Feng*, WANG Jiafan, YI Jianbing, LI Jun   

  1. School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi 341000, China
  • Received:2024-02-03 Revised:2024-03-31 Online:2024-12-30 Published:2024-12-30

Abstract: The first-order logic automated theorem proving is the core foundation of artificial intelligence. Heuristic strategies have attracted much attention in improving first-order logic automated theorem provers, and selecting effective clauses based on clause properties to participate in deduction is an important research topic. Based on the standard contradiction separation rule, the literals in clauses are divided into two parts, which are constructing standard contradictory text and constructing contradictory separation text. By analyzing the relationship and differences between variables, functions, and constants, a stability based on clause measurement method is proposed, and its core idea is to evaluate the stability of clause participating in deduction through the components of contained term. A multi-clause dynamic deduction algorithm (CFA, clause stability algorithm) is proposed based on clause stability, aiming to search for optimal paths during the current deduction process. This newly-built CFA algorithm is applied to the internationally well-known prover Prover9 and top prover Eprover2.6, and two new provers CFA_P and CFA_E are formed, respectively. The international competition problems of CASC-26 (FOF division) is tested on CFA_P and CFA_E. CFA_P can solve 119 theorems more than the original Prover9, and CFA_E outperforms Eprover2.6, solving 11 theorems more than the original Eprover2.6, and the average proof time of theorems of CFA_P and CFA_E is reduced by 14.76 s and 2.54 s, respectively with the same total number of solved theorems. Focusing on the 94 theorems unsolved by Eprover2.6, CFA_E solves 27 theorems which accounts for 28.7% in the total. The experimental results demonstrate the effectiveness of the CFA algorithm, which has good performance in optimizing deduction paths and can enhance the performance of first-order logic automated theorem prover.

Key words: first-order logic, theorem proving, artificial intelligence, heuristic strategy, multi-clause dynamic deduction

CLC Number:  TP18
[1] ROBINSON J A. A machine-oriented logic based on the resolution principle[J]. Journal of the ACM, 1965, 12(1): 23-41. DOI: 10.1145/321250.321253.
[2] SUTCLIFFE G. The TPTP problem library and associated infrastructure: from CNF to TH0, TPTP v6.4.0[J]. Journal of Automated Reasoning, 2017, 59(4): 483-502. DOI: 10.1007/s10817-017-9407-7.
[3] KOVÁCS L. Symbolic computation and automated reasoning for program analysis[C] // Integrated Formal Methods: LNCS Volume 9681. Cham: Springer, 2016: 20-27. DOI: 10.1007/978-3-319-33693-0_2.
[4] XU Y, LIU J, CHEN S W, et al. Contradiction separation based dynamic multi-clause synergized automated deduction[J]. Information Sciences, 2018, 462: 93-113. DOI: 10.1016/j.ins.2018.04.086.
[5] XU Y,LIU J, CHEN S W, et al. A novel generalization of resolution principle for automated deduction[C] // Uncertainty Modelling in Knowledge Engineering and Decision Making: Proceedings of the 12th International FLINS Conference. Singapore: World Scientific Publishing Co. Pte. Ltd., 2016: 483-488. DOI: 10.1142/9789813146976_0078.
[6] 曾国艳, 徐扬, 陈树伟, 等. 基于多属性决策的一阶逻辑子句选择方法[J/OL]. 西南交通大学学报[2024-02-03]. https://link.cnki.net/urlid/51.1277.U.20230901.1529.011.
[7] CAO F, XU Y, ZHONG J, et al. Holistic deductive framework theorem proving based on standard contradiction separation for first-order logic[C] // 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). Piscataway, NJ: IEEE, 2017: 1-5. DOI: 10.1109/ISKE.2017.8258782.
[8] 钟建, 徐扬, 陈树伟, 等. 一阶逻辑中基于稳定度的项评估方法[J]. 计算机工程, 2019, 45(11): 183-190, 197. DOI: 10.19678/j.issn.1000-3428.0054368.
[9] 林玲瑜, 曹锋, 易见兵, 等. 基于子句活跃度和复杂度的多元动态演绎算法及应用[J]. 计算机工程与科学, 2023, 45(12): 2256-2264. DOI: 10.3969/j.issn.1007-130X.2023.12.017.
[10] 曹锋, 郭海林, 易见兵, 等. 基于矛盾体分离的多元冲突演绎方法及应用[J/OL]. 武汉大学学报(理学版)[2024-02-03]. https://doi.org/10.14188/j.1671-8836.2023.0181.
[11] 曹锋, 潘世成, 易见兵, 等. 子句充分性评估的多元动态演绎算法及应用[J]. 华中科技大学学报(自然科学版),2024,52(11):153-160. DOI: 10.13245/j.hust.240468.
[12] GROZA A. Getting Started with Prover9 and Mace4[M] // GROZA A。 Modelling Puzzles in First Order Logic. Cham: Springer, 2021: 1-9. DOI: 10.1007/978-3-030-62547-4_1.
[13] SCHULZ S. System description: E 1.8[C] // Logic for Programming Artificial Intelligence and Reasoning. Berlin: Springer-Verlag, 2013: 735-743. DOI: 10.1007/978-3-642-45221-5_49.
[14] SCHULZ S,CRUANES S,VUKMIROVIĆ P. Faster,higher,stronger:E 2.3[C] // Automated Deduction-CADE 27: LNCS Volume 11716. Cham: Springer, 2019: 495-507. DOI: 10.1007/978-3-030-29436-6_29.
[15] 郝娇, 惠小静, 马硕, 等. 一阶逻辑中公理化真度研究[J]. 计算机科学, 2021, 48(11A): 669-671, 712. DOI: 10.11896/jsjkx.210200012.
[16] 曹锋, 徐扬, 吴贯锋, 等. 多元动态演绎在Prover9证明器中的应用[J]. 计算机工程与科学, 2019, 41(9): 1686-1692. DOI: 10.3969/j.issn.1007-130X.2019.09.022.
[17] 曹锋. 一种基于矛盾体分离演绎的一阶逻辑自动定理证明器研究[D]. 成都: 西南交通大学, 2020.
[18] SUTCLIFFE G. The CADE-26 automated theorem proving system competition: CASC-26[J]. AI Communications, 2017, 30(6): 419-432. DOI: 10.3233/AIC-170744.
[19] 曹钦翔, 詹博华, 赵永望. 定理证明理论与应用专题前言[J]. 软件学报, 2022, 33(6): 2113-2114. DOI: 10.13328/j.cnki.jos.006582.
[20] 孙毅, 陈哲, 冉丹, 等. 一种SCADE同步语言程序安全属性自动验证工具[J]. 小型微型计算机系统, 2022, 43(4): 858-864. DOI: 10.20009/j.cnki.21-1106/TP.2020-0941.
[21] XU R Q, LI L M, ZHAN B H. Verified interactive computation of definite integrals[C] // Automated Deduction-CADE 28: LNCS Volume 12699. Cham: Springer, 2021: 485-503. DOI: 10.1007/978-3-030-79876-5_28.
[1] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .