Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 22-31.doi: 10.16088/j.issn.1001-6600.2023101703

Previous Articles     Next Articles

Advances in Functional Morphology of Locomotion in Primates

SUN Tao1,2,3, NIU Wenxin4,5, LI Zhaoyuan6, ZHOU Qihai1,2,3*, HUANG Chengming1,2,3,7*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. The Chongzuo White-headed Langur Field Observation and Research Station of Guangxi, Chongzuo Guangxi 532204, China;
    4. Yangzhi Rehabilitation Hospital, Tongji University, Shanghai 201619, China;
    5. Laboratory of Rehabilitation Engineering and Biomechanics, School of Medicine, Tongji University, Shanghai 200092, China;
    6. College of Geography and Ecotourism, Southwest Forestry University, Kunming Yunnan 650224, China;
    7. Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2023-10-17 Revised:2023-12-06 Online:2024-07-25 Published:2024-09-05

Abstract: Functional morphology is the study of the mutual adaptation of function and form. Primates (including human and non-human primates) are an extremely special group in the animal kingdom. They show strong adaptability to the environment in terms of morphology, physiology, and behavior, making them often as model animals for the study of ecological issues. In order to adapt to the diverse habitats, primates have evolved different locomotion patterns, and their skeletal and muscular systems have also evolved accordingly to adapt to different locomotion patterns. At the same time, primates are similar to humans in ecological niche, social structure, geographical distribution and evolution. Research on the functional morphology of their locomotion will not only help to understand the ecology and adaptation of primates, but also provide an understanding on the role of motor functions played in human evolution. This paper summarizes the development history of functional morphology of locomotion in primates and explores the movement patterns of primates and the corresponding characteristics and functions of the skeletal and muscular systems. In the future, new technologies and methods will continue to be integrated into the study of locomotion functional morphology in primates, which will further enrich people’s understanding of primates and reveal the adaptation and evolution rules of their structures and functions.

Key words: primates, locomotion, functional morphology, adaptation

CLC Number:  Q98
[1] GROVES C P. Primatr taxonomy[M]. Washington, DC: Smithsonian Institution Press, 2001.
[2] FLEAGLE J G. Primate adaptation and evolution[M]. 3rd ed. San Diego: Academic Press, 2013.
[3] MITTERMEIER R A, RYLANDS A B, WILSON D E. Handbook of the mammals of the world: Vol. 3: Primates[M]. Barcelona, E S: Lrnx Edicions, 2013.
[4] BEGUN D R, KIVELL T L. Knuckle-walking in Sivapithecus? The combined effects of homology and homoplasy with possible implications for pongine dispersals[J]. Journal of Human Evolution, 2011, 60(2): 158-170. DOI: 10.1016/j.jhevol.2010.10.002.
[5] LARSON S G. Nonhuman primate locomotion[J]. America Journal of Physical Anthropology, 2018, 165(4): 705-725. DOI: 10.1002/ajpa.23368.
[6] LARSON S G, STERN J T, Jr. Role of supraspinatus in the quadrupedal locomotion of vervets (Cercopithecus aethiops): implications for interpretation of humeral morphology[J]. American Journal of Physical Anthropology, 1989, 79(3): 369-377. DOI: 10.1002/ajpa.1330790313.
[7] LARSON S G. Functional morphology of the shoulder in primates[M] //GEBO D L. Postcranial Adaptation in Non-Human Primates, Dekalb: Northern Illinois University Press, 1993: 45-69.
[8] NESBITT R A. Positional behavior of Rhinopithecus[J]. American Journal of Physical Anthropology, 1989, 78: 279-280.
[9] REMIS M. Effects of body size and social context on the arboreal activities of lowland gorillas in the Central African Republic[J]. American Journal of Physical Anthropology, 1995, 97(4): 413-433. DOI: 10.1002/ajpa.1330970408.
[10] BEZANSON M. Primate positional behavior development and evolution[J]. Annual Review of Anthropology, 2018, 46: 279-298. DOI: 10.1146/annurev-anthro-102116-041503.
[11] YOUNG J W, SHAPIRO L J. Developments in development: what have we learned from primate locomotor ontogeny?[J]. American Journal of Physical Anthropology, 2018, 165(suppl 65): 37-71. DOI: 10.1002/ajpa.23388.
[12] CAMPBELL B. The shoulder musculature of the platyrrhine monkeys[J]. Journal of Mammalogy, 1937, 18(1): 66-71. DOI: 10.2307/1374310.
[13] OXNARD C E. The functional morphology of the primate shoulder as revealed by comparative anatomical, osteometric and discriminant function techniques[J]. American Journal of Physical Anthropology, 1967, 26(2): 219-240. DOI: 10.1002/ajpa.1330260209.
[14] 潘汝亮, 彭燕章, 叶智彰. 短尾猴与猕猴肩胛骨的比较研究[J]. 解剖学报, 1990, 21(2): 113-118.
[15] 俞发宏, 叶智彰, 潘汝亮, 等. 懒猴肩关节的多变量分析[J]. 动物学研究, 1993, 14(2): 102-109.
[16] PAN R, OXNARD C. Cranial morphology of the golden monkey (Rhinopithecus) and douc langur (Pygathrix nemaeus)[J]. Human Evolution, 2001, 16(3): 199-223. DOI: 10.1007/BF02437412.
[17] PÜSCHEL T A, SELLERS W I. Standing on the shoulders of apes: analyzing the form and function of the hominoid scapula using geometric morphometrics and finite element analysis[J]. American Journal of Physical Anthropology, 2016, 159(2): 325-341. DOI: 10.1002/ajpa.22882.
[18] O’NEILL M C, UMBERGER B R, HOLOWKA N B, et al. Chimpanzee super strength and human skeletal muscle evolution[J]. Proceedings of the Natiional Academy of Sciences of the United State of America, 2017, 114(28): 7343-7348. DOI: 10.1073/pnas.1619071114.
[19] HARMON E H. The shape of the hominoid proximal femur: a geometric morphometric analysis[J]. Journal of Anatomy, 2007, 210(2): 170-185. DOI: 10.1111/j.1469-7580.2006.00688.x.
[20] GRANATOSKY M C. A review of locomotor diversity in mammals with analyses exploring the influence of substrate-use, body mass and intermembral index in primates[J]. Journal of Zoology, 2018, 306(4): 207-216. DOI: 10.1111/jzo.12608.
[21] MA C, FAN P F. Effect of substrate type on langur positional repertoire[J]. Global Ecology and Conservation, 2020, 22: e00956. DOI: 10.1016/j.gecco.2020.e00956.
[22] ANAPOL F, GRAY J P. Fiber architecture of the intrinsic muscles of the shoulder and arm in semiterrestrial and arboreal guenons[J]. American Journal of Physical Anthropology, 2003, 122(1): 51-65. DOI: 10.1002/ajpa.10269.
[23] GÜNTHER M M, ISHIDA H, KUMAKURA H, et al. The jump as a fast mode of locomotion in arboreal and terrestrial biotopes[J]. Zeitschrift Fur Morphologie und Anthropologie, 1991, 78(3): 341-372. DOI: 10.1127/zma/78/1991/341.
[24] SCHMITT D. Forelimb mechanics during arboreal and terrestrial quadrupedalism in old world monkeys[M] //STRASSER E, FLEAGLE J G, ROSENBERGER A L, et al. Primate Locomotion. Boston: Springer, 1998: 175-200.
[25] SCHMITT D. Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates[J]. Journal of Human Evolution 2003, 44(1): 47-58. DOI: 10.1016/S0047-2484(02)00165-3.
[26] HUNT K D. Mechanical implications of chimpanzee positional behavior[J]. American Journal of Physical Anthropology, 1991, 86(4): 521-536. DOI: 10.1002/ajpa.1330860408.
[27] SHEA B T, INOUYE S E. Knuckle-walking ancestors[J]. Science, 1993, 259(5093): 293-294. DOI: 10.1126/science. 293.5093.293.6.
[28] MORBECK M E, Positional behavior, selective use of habitat substrate and associated non-positional behavior in free-ranging Colobus guereza (Rüppel, 1835)[J]. Primates, 1977, 18(1): 35-58. DOI: 10.1007/BF02382952.
[29] TUTTLE R H. Knuckle-walking and the problem of human origins[J]. Science, 1969, 166(3908): 953-961. DOI: 10.1126/science.166.3908.953.
[30] TUTTLE R H, BASMAJIAN J V. Electromyography of pongid shoulder muscles II. Deltoid, rhomboid and “rotator cuff”[J]. American Journal of Physical Anthropology, 1978, 49(1): 47-56. DOI: 10.1002/ajpa.1330490109.
[31] BOINSKI S. The positional behavior and substrate use of squirrel monkeys: ecological implications[J]. Journal of Humman Evolution, 1989, 18(7): 659-677. DOI: 10.1016/0047-2484(89)90099-7.
[32] MYATT J P, CROMPTON R H, PAYNE-DAVIS R C, et al. Functional adaptations in the forelimb muscles of non-human great apes[J]. Journal of Anatomy, 2012, 220(1): 13-28. DOI: 10.1111/j.1469-7580.2011.01443.x.
[33] RAICHLEN D A, PONTZER H, SHAPIRO L J, et al. Understanding hind limb weight support in chimpanzees with implications for the evolution of primate locomotion[J]. American Journal of Physical Anthropology, 2009, 138(4): 395-402. DOI: 10.1002/ajpa.20952.
[34] STERN J T, Jr, WELLS J P, JUNGERS W L, et al. An electromyographic study of the pectoralis major in atelines and Hylobates, with special reference to the evolution of a pars clavicularis[J]. American Journal of Physical Anthropology, 1980, 52(1): 13-26. DOI: 10.1002/ajpa.1330520104.
[35] VANGOR A K, WELLS J P. Muscle recruitment and the evolutionof bipedality: evidence from telemetered electromyography of spider, woolly and patas monkeys[J]. Annaul Scientific Nature of Zoology, 1983, 5: 125-135.
[36] TAKAHASHI L K. Morphological basis of arm-swinging: multivariate analyses of the forelimbs of Hylobates and Ateles[J]. Folia Primatologica, 1990, 54(1/2): 70-85. DOI: 10.1159/000156427.
[37] BYRON C D, COVERT H H. Unexpected locomotor behaviour: brachiation by an old world monkey (Pygathrix nemaeus) from Vietnam[J]. Journal of Zoology, 2004, 263(1): 101-106. DOI: 10.1017/S0952836904004935.
[38] GEBO D L, SARGIS E J. Terrestrial adaptations in the postcranial skeletons of guenons[J]. American Journal of Physical Anthropology, 1994, 93(3): 341-371. DOI: 10.1002/ajpa.1330930306.
[39] GEBO D L, CHAPMAN C A. Positional behavior in five sympatric old world monkeys[J]. American Journal of Physical Anthropology, 1995, 97(1): 49-76. DOI: 10.1002/ajpa.1330970105.
[40] GEBO D L. Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism[J]. American Journal of Physical Anthropology, 1996, 101(1): 55-92. DOI: 10.1002/(SICI)1096-8644(199609)101:1<55::AID-AJPA5>3.0.CO;2-C.
[41] DIOGO R, POTAU J M, PASTOR J F, et al. Photographic and descriptive musculoskeletal atlas of gibbons and siamangs, (Hylobates)[M]. Bota Raton: CRC Press, 2012.
[42] TAYLOR A B. Scapula form and biomechanics in gorillas[J]. Journal of Human Evolution, 1997, 33(5): 529-553. DOI: 10.1006/jhev.1997.0147.
[43] JUNGERS W L, STERN J T. Preliminary electromyographical analysis of brachiation in gibbon and spider monkey[J]. International Journal of Primatology, 1981, 2(1): 19-33. DOI: 10.1007/BF02692297.
[44] JUNGERS W L. Scaling of the hominoid locomotor skeleton with special reference to lesser apes[C] //Body size and scaling of limb proportions in primates. New York: Plenum Press, 1984: 341-381.
[45] KAGAYA M. Gleniohumeral joint surface characters and its relation to forelimb suspensory behavior in three ateline primates, Ateles, Lagothrix, and Alouatta[J]. Anthropological Science, 2007, 115(1): 17-23. DOI: 10.1537/ase.041209.
[46] OISHI M, OGIHARA N, ENDO H, et al. Muscle architecture of the upper limb in the orangutan[J]. Primates, 2008, 49(3):204-209. DOI: 10.1007/s10329-008-0082-5.
[47] OISHI M, OGIHARA N, ENDO H, et al. Dimensions of forelimb muscles in orangutans and chimpanzees[J]. Journal of Anatomy, 2009, 215(4): 373-382. DOI: 10.1111/j.1469-7580.2009.01125.x.
[48] SWARTZ S M, BERTRAM J E A, BIEWENER A A. Telemetered in vivo strain analysis of locomotor mechanics of brachiating gibbons[J]. Nature, 1989, 342(6247): 270-272. DOI: 10.1038/342270a0.
[49] AMADI H O, HANSEN U N, WALLACE A L, et al. A scapular coordinate frame for clinical and kinematic analyses[J]. Journal of Biomechnics, 2008, 41(10): 2144-2149. DOI: 10.1016/j.jbiomech.2008.04.028.
[50] VAN DER HELM F C T. Analysis of the kinematic and dynamic behavior of the shoulder mechanism[J]. Journal of Biomechanics, 1994, 27(5): 527-550. DOI: 10.1016/0021-9290(94)90064-7.
[51] VEEGER H E J, VAN DER HELM F C T, VAN DER WOUDE L H V, et al. Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism[J]. Journal of Biomechanics, 1991, 24(7): 615-629. DOI: 10.1016/0021-9290(91)90294-W.
[52] ISHIDA H, KIMURA T, OKADA M, et al. Kinesiological aspects of bipedal walking in gibbons[C] //The Lesser Apes: Evolutionary and Behavioural Biology. Edinburgh: Edinburgh Press, 1984.
[53] YAMAZAKI N, ISHIDA H. A biomechanical study of vertical climbing and bipedal walking in gibbons[J]. Journal of Human Evolution, 1984, 13(7): 563-571. DOI: 10.1016/S0047-2484(84)80028-7.
[54] DVIR Z, BERME N. The shoulder complex in elevation of the arm: A mechanism approach[J]. Journal of Biomechanics, 1978, 11(5): 219-225. DOI: 10.1016/0021-9290(78)90047-7.
[55] ROBERTS D. Form and function of the primate scapula[D]. New Haven: Yale University, 1973.
[56] POTAU J M, ARTELLS R, BELLO G, et al. Expression of myosin heavy chain isoforms in the supraspinatus muscle of different primate species: Implications for the study of the adaptation of primate shoulder muscles to different locomotor modes[J]. International Journal of Primatology, 2011, 32(4): 931-944. DOI: 10.1007/s10764-011-9512-0.
[57] JOHNSON G R, SPALDING D, NOWITZKE A, et al. Modelling the muscles of the scapula morphometric and coordinate data and functional implications[J]. Journal of Biomechanics, 1996, 29(8): 1039-1051. DOI: 10.1016/0021-9290(95)00176-X.
[58] ROSE M D. Quadrupedalism in primates[J]. Primates, 1973, 14(4): 337-357. DOI: 10.1007/BF01731356.
[59] LARSON S G, STERN J T, Jr. EMG of scapulahumeral muscles in the chimpanzee during reaching and “arboreal” locomotion[J]. America Journal of Anatomy, 1986, 176(2): 171-190. DOI: 10.1002/aja.1001760207.
[60] LARSON S G, STERN J T, Jr. Rotator cuff muscle function and its relation to scapular morphology in apes[J]. Journal of Human Evolution, 2013, 65(4): 391-403. DOI: 10.1016/j.jhevol.2013.07.010.
[61] BAILEY K E, PAMPUSH J D. Intrageneric shape variation of douc langur scapula (Genus Pygathrix.)[J]. Vietnamese Journal of Primatology, 2015, 2(4): 25-32.
[62] SU D F, JABLONSKI N G. Locomotor behavior and skeletal morphology of the odd-nosed monkeys[J]. Folia Primatologica, 2009, 80(3): 189-219. DOI: 10.1159/000240967.
[63] SARRINGHAUS L, LEWTON K L, IQBAL S,et al. Ape femoral-humeral rigidities and arboreal locomotion[J]. American Journal of Biological Anthropology, 2022, 179(4): 624-639. DOI: 10.1002/ajpa.24632.
[64] CHAN L K. Scapular position in primates[J]. Folia Primatologica, 2007, 78(1): 19-35. DOI: 10.1159/000095683.
[65] PREUSCHOFT H, HOHN B, SCHERF H, et al. Functional analysis of the primate shoulder[J]. International Journal of Primatology, 2010, 31(2): 301-320. DOI: 10.1007/s10764-010-9399-1.
[66] SCHMIDT M, KRAUSE C. Scapula movements and their contribution to three-dimensional forelimb excursions in quadrupedal primates[M] //D′AOÛT K, VEREECKE E E. Primate locomotion. New York: Springer, 2011: 83-108. DOI: 10.1007/978-1-4419-1420-0_6.
[67] GREEN D J, ALESEGED Z. Australopithecus afarensis scapular ontogeny, function, and the role of climbing in human evolution[J]. Science, 2012, 338(6106): 514-517. DOI: 10.1126/science.1227123.
[68] BAILEY K E, LAD S E, PAMPUSH J D. Functional morphology of the douc langur (Pygathrix spp.) scapula[J]. American Journal of Primatology, 2017, 79(6): 22646. DOI: 10.1002/ajp.22646.
[69] YOUNG N. Modularity and integration in the hominoid scapula[J]. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 2004, 302(3): 226-240. DOI: 10.1002/jez.b.21003.
[70] YOUNG N M. A comparison of the ontogeny of shape variation in the anthropoid scapula: Functional and phylogenetic signal[J]. American Journal of Physical Anthropology, 2008, 136(3): 247-264. DOI: 10.1002/ajpa.20799.
[71] BELLO-HELLEGOUARCH G, POTAU J M, ARIAS-MARTORELL J, et al. A comparison of qualitative and quantitative methodological approaches to characterizing the dorsal side of the scapula in hominoidea and its relationship to locomotion[J]. International Journal of Primatolology, 2013, 34(2): 315-336. DOI: 10.1007/s10764-013-9660-5.
[72] MICHILSENS F, VEREECKE E E, D’AOÛT K, et al. Functional anatomy of the gibbon forelimb: adaptations to a brachiating lifestyle[J]. Journal of Anatomy, 2009, 215(3): 335-354. DOI: 10.1111/j.1469-7580.2009.01109.x.
[73] WRIGHT K A, STEVENS N J, COVERT H H, et al. Comparisons of suspensory behaviors among Pygathrix cinerea, P. nemaeus, and Nomascus leucogenys in Cuc Phuong National Park, Vietnam[J]. International Journal of Primatology, 2008, 29(6): 1467-1480. DOI: 10.1007/s10764-008-9319-9.
[74] DEMES B, LARSON S G, STERN J T, Jr, et al. The kinetics of primate quadrupedalism: “hindlimb drive” reconsidered[J]. Journal of Human Evolution, 1994, 26(5/6): 353-374. DOI: 10.1006/jhev.1994.1023.
[75] DEMES B, JUNGERS W L, GROSS T S, et al. Kinetics of leaping primates: influence of substrate orientation and compliance[J]. American Journal of Physical Anthropology, 1995, 96(4): 419-429. DOI: 10.1002/ajpa.1330960407.
[76] VIOSIN J L. Clavicle, a neglected bone: morphology and relation to arm movements and shoulder architecture in primates[J]. The Anatomical Record, 2006, 288A(9): 944-953.DOI: 10.1002/ar.a.20354.
[77] JENKINS F A, Jr, DOMBROWSKI P J, GORDON E P. Analysis of the shoulder in brachiating spider monkeys[J]. American Journal of Physical Anthropology, 1978, 48(1): 65-76. DOI: 10.1002/ajpa.1330480110.
[78] MARCHI D, RIMOLDI A, GARCÍA-MARTÍNEZ D, et al. Morphologicla correlates of distal fibular morphology with locomotion in great apes, humans, and Australopithecus afarensis[J]. American Journal of Biological Anthropology, 2022, 178(2): 286-300. DOI: 10.1002/ajpa.24507.
[1] LI Ting, XU Zhenghui, LI Biao, ZHAI Jiang, HAN Xiu, ZHANG Xinmin,. Distribution Characteristics of Ant Species in Eastern Daliangshan of Sichuan, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 174-191.
[2] JIANG Rui, XU Juan, LI Qiang. A Prediction Method of Bearing Remaining Useful Life Based on Cross Domain Mean Approximation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 121-131.
[3] DONG Xiaoyan, LIANG Qiufang, FENG Ping. Drug Metabolism and Evolution of CYP2D Subfamily Genes in Primates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 131-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .