Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 172-185.doi: 10.16088/j.issn.1001-6600.2023080902

Previous Articles     Next Articles

Development of Biotic Index Based on Macroinvertebrates to Assess the River’s Health in Lijiang

YANG Haiju1, WEI Feng1, CHEN Jiamei2,3,4, CHEN Bei1,5*, LI Fang1, DU Lina2,3,4*, HAN Xuerong1   

  1. 1. Environmental Monitoring Center Station, Guangxi Zhuang Autonomous Region Ecological Environment Bureau, Nanning Guangxi 530022, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    3. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China;
    4. College of Life Science, Guangxi Normal University, Guilin Guangxi 541006, China;
    5. Guangxi Key Laboratory of Emerging Contaminants Monitoring and Early Warning and Environmental Health Assessment, Nanning Guangxi 530022, China
  • Received:2023-08-09 Revised:2023-10-14 Online:2024-07-25 Published:2024-09-05

Abstract: The Lijiang River is one of the 15 most beautiful rivers in the world, with high aquatic biodiversity. However, the water quality has been affected due to the rapid economic development. This study aims to develop a biotic index based on macroinvertebrates and to evaluate the ecological health status of the Lijiang River. Based on the identification of macroinvertebrates and water physicochemical data from 26 monitoring sites in Guilin from August, November 2021 to August 2022, a complete set of water quality evaluation index was constructed to scientifically evaluate the water quality of Lijiang River. The Lijiang Zoobenthic Biotic Index (LJBI) proposed in this study analyzed the physicochemical values of water quality at monitoring points using the principal component analysis method and was associated with the distribution of macroinvertebrates. The LJBI values were divided into four level by 25%, 50%, and 75% quantiles, representing the health, sub-health, average and poor, respectively. This index divided the Lijiang River water quality health into four levels: excellent, good, medium, and general. The result showed that most of the macroinvertebrates distributed in the Lijiang River were moderately pollution-tolerant species, while the species adapted to clean water quality, such as Nebrioporus spp., Microvelia spp., and Aciagrion spp. were only distributed in the upstream. Therefore, it was important to protect the upstream and tributary streams. Based on the classification level of the genus, certain sensitive values were assigned to each genus, and the health status of water quality in the Lijiang River was assessed according to the average value of sensitive values at each monitoring point. The results showed that the water quality in the upper reaches of the Lijiang River was good, for example Qingshitan, Gaozai, and Huajiang sample sites were evaluated as excellent, but the water quality in the lower reaches of the Lijiang River was badly affected by human activities, such as the water body of Jingpingshan sample site was cloudy due to the influence of bridge construction, and the water ecology of this site was evaluated as general by LJBI. The benefits of LJBI contain: (1) It remains unaffected by the quantity of individual species; (2) For the users, is is simple in operation, convenience in calculation, and quick in conclusions; (3) It is convenient to promote the popularization of scientific knowledge of ecological health status of water quality within the Lijiang River basin.

Key words: water quality assessment, macroinvertebrate, Lijiang River, biotic index

CLC Number:  Q958.8
[1] 王备新. 大型底栖无脊椎动物水质生物评价研究[D]. 南京: 南京农业大学, 2003.
[2] 郑卫, 杨阳, 熊枭, 等. 浅谈大型底栖动物在水生态系统中的生态功能[J]. 农业与技术, 2023, 43(10): 109-111. DOI: 10.19754/j.jyyjs.20230530024.
[3] 白国栋, 戈敏生, 曾继绵, 等. 永和坪长滩两个水库区域建立水库以前的水生生物初步调查[J]. 海洋与湖沼, 1960(1): 13-28.
[4] 颜京松, 游贤文, 苑省三. 以底栖动物评价甘肃境内黄河干支流枯水期的水质[J]. 环境科学, 1980, 1(14): 14-20.
[5] 刘保元, 王士达, 王永明, 等. 利用底栖动物评价图们江污染的研究[J]. 环境科学学报, 1981,1(4): 337-348.
[6] 王士达, 刘保元, 杨潼. 湘江的水生生物与水质污染[J]. 环境科学, 1981, 2(6): 49-51, 48.
[7] 杞桑, 林美心. 用大型底栖动物再次对珠江广州河段污染的评价[J]. 环境科学学报, 1985, 5(3): 354-359.
[8] 张建波, 李利强, 田琪. 洞庭湖底栖动物多样性及水质现状评价[J]. 内陆水产, 2002, 27(3): 42-43.
[9] 王新华, 纪炳纯, 刘越. 天津市主要公园底栖动物及其水质评价[J]. 动物科学与动物医学, 2002,19(5): 13-15. DOI: 10.3969/j.issn.1673-5358.2002.05.008.
[10] 王备新, 杨莲芳. 我国底栖动物BI指数水质生物评价标准的初步建立[J]. 中国农业科技导报, 2003, 5(5): 42. DOI: 10.3969/j.issn.1008-0864.2003.05.056.
[11] 吴阿娜, 杨凯, 车越, 等. 河流健康评价在城市河流管理中的应用[J]. 中国环境科学, 2006, 26(3): 359-363. DOI: 10.3321/j.issn:1000-6923.2006.03.024.
[12] 黄亮亮, 吴志强, 蒋科, 等. 东苕溪鱼类生物完整性评价河流健康体系的构建与应用[J]. 中国环境科学, 2013, 33(7): 1280-1289.
[13] KERANS B L, KARR J R. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley[J]. Ecological Applications, 1994, 4(4): 768-785. DOI: 10.2307/1942007.
[14] BLOCKSOM K A, KURTENBACH J P, KLEMM D J, et al. Development and evaluation of the Lake Macroinvertebrate Integrity Index (LMII) for New Jersey lakes and reservoirs[J]. Environmental Monitoring and Assessment, 2002, 77(3): 311-333. DOI: 10.1023/a:1016096925401.
[15] 王备新, 杨莲芳, 胡本进, 等. 应用底栖动物完整性指数B-IBI评价溪流健康[J]. 生态学报, 2005, 25(6): 1481-1490. DOI: 10.3321/j.issn:1000-0933.2005.06.037.
[16] LI Z F, ZENG B. Health assessment of important tributaries of Three Georges Reservoir based on the benthic index of biotic integrity[J]. Scientific Reports, 2020, 10(1): 18743. DOI: 10.1038/s41598-020-75746-7.
[17] 游清徽, 刘玲玲, 方娜, 等. 基于大型底栖无脊椎动物完整性指数的鄱阳湖湿地生态健康评价[J]. 生态学报, 2019, 39(18): 6631-6641. DOI: 10.5846/stxb201806041248.
[18] HUANG Q, GAO J F, CAI Y J,et al. Development and application of benthic macroinvertebrate-based multimetric indices for the assessment of streams and rivers in the Taihu Basin, China[J]. Eclolgical Indicators, 2015, 48: 649-659. DOI: 10.1016/j.ecolind.2014.09.014.
[19] 曹艳霞. 漓江流域大型底栖无脊椎动物群落结构与水质生物评价[D]. 南京: 南京农业大学, 2010.
[20] 章运超, 朱孔贤, 柴朝晖, 等. 基于大型底栖动物完整性指数的龙感湖健康评价[J]. 长江科学院院报, 2023, 40(6): 21-28, 34. DOI: 10.11988/ckyyb.20220439.
[21] 展洋, 汪双, 陈吉平, 等. 基于大型底栖动物完整性指数的黑河中上游水生生态系统健康评价[J]. 中国沙漠, 2023, 43(2): 271-280. DOI: 10.7522/j.issn.1000-694X.2022.00143.
[22] 苏梦, 董伟萍, 赵世高, 等. 基于大型底栖动物完整性指数的河湖生态系统健康评价: 以安徽铜陵为例[J]. 长江流域资源与环境, 2023, 32(1): 104-112. DOI: 10.11870/cjlyzyyhi202301010.
[23] 张辉, 袁世辉, 姚志鹏, 等. 基于底栖动物的东江上游生态健康状况评价[J]. 水生态学杂志, 2022, 43(1): 24-29. DOI: 10.15928/j.1674-3075.201912110305.
[24] 姜永伟, 丁振军, 袁俊斌, 等.辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. DOI: 10.16258/j.cnki.1674-5906.2023.05.014.
[25] 孙久星, 徐光来, 池建宇, 等. 基于大型底栖动物的青弋江河流健康评价[J]. 长江流域资源与环境, 2023, 32(6): 1254-1266. DOI: 10.11870/cjlyzyyhj202306013.
[26] 李鑫, 邓培雁, 刘威. 柳江流域大型底栖动物群落结构及其与水质因子的关系[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 53-61. DOI: 10.6054/j.jscnun.2021075.
[27] 陈凯, 张永祥, 蔡德所, 等. 漓江大型底栖无脊椎动物群落结构与水质生物评价[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 115-122. DOI: 10.3969/j.issn.1001-6600.2012.04.018.
[28] 王秀云, 韩政, 谭梦, 等. 基于大型底栖无脊椎动物生物完整性指数的苏州市水体生态健康评价[J]. 上海海洋大学学报, 2023, 32(4): 763-772. DOI: 10.12024/jsou.20200603079.
[29] 韩耀全, 周解, 吴祥庆. 漓江的自然地理与水质调查[J]. 广西水产科技, 2007(2): 8-16.
[30] 王业耀. 中国流域常见水生生物图集[M]. 北京:科学出版社, 2020.
[31] TACHET H, RICHOUX P, BOURNAUD M, 等. 淡水无脊椎动物系统分类、生物及生态学[M]. 刘威, 王旭涛, 黄少峰,译. 北京:中国水利水电出版社, 2015.
[32] 刘月英, 张文珍, 王耀先. 医学贝类学[M]. 北京:海洋出版社, 1993.
[33] 周长发, 苏翠荣, 归鸿. 中国蜉蝣概述[M]. 北京:科学出版社, 2015.
[34] FOLMER O, BLACK M, HOEH W,et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates[J]. Molecular Marine Biology and Biotechnology, 1994, 3(5): 294-299.
[35] ARMITAGE P D, MOSS D, WRIGHT J F, et al. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites[J]. Water Research, 1983, 17(3): 333-347. DOI: 10.1016/0043-1354(83)90188-4.
[36] DU L N, JIANG Y E, CHEN X Y, et al. A family-level macroinvertebrate biotic index for ecological assessment of lakes in Yunnan, China[J]. Water Resources, 2017, 44(6): 864-874. DOI: 10.1134/S0097807817090020.
[37] CADE B C, NOON B R. A gentle introduction to quantile regression for ecologists[J]. Frontiers in Ecology and the Environment, 2003, 1(8): 412-420. DOI: 10.1890/1540-9295(2003)001[0412:AGITQR] 2.0.CO;2.
[38] 蔡赫. 嫩江下游底栖动物群落结构及水质评价研究[D]. 哈尔滨: 东北林业大学, 2013.
[39] 李杨, 蒋万祥, 李斌, 等. 2009年苍山水系6条源头河流中的大型底栖动物群落结构季节动态[J]. 湿地科学, 2016, 14(5): 733-739.
[40] 李倩, 马姜明. 2009-2018年桂林市生态足迹动态变化与驱动力分析[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 178-188. DOI: 10.16088/j.issn.1001-6600.2022071902.
[41] 黄信望, 卢远, 蔡德所. 漓江流域水生态健康评价系统设计与实现[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 161-165. DOI: 10.3969/j.issn.1001-6600.2012.04.025.
[1] ZHU Bailu, YANG Qiyong, XIE Yunqiu, DENG Yan, TANG Meirong, LIU Dacun, ZENG Hongchun. Spatial Distribution and Driving Factors of Karst Rocky Desertification in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 139-150.
[2] LIANG Shi-chu, TIAN Hua-li, TIAN Feng, XIA Yi, QIN Ying-ying. Wetland Vegetation Types and Their Distribution Characteristics in Lijiang River [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 115-119.
[3] CHEN Kai, ZHANG Yong-xiang, CAI De-suo, ZHANG jie, XU Sheng, WANG Bei-xing. Benthic Macroinvertebrate Community Structure and Water Quality Bioassessment in Lijiang River,Guilin,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 115-122.
[4] ZHOU Jing, LIU Shuo-ru, CAI De-suo, ZHANG Yong-xiang, WANG Bei-xing. Water Quality Bioassessment with Benthic Diatom in Lijiang River, Guilin,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 123-129.
[5] ZHU Yu, CAI De-suo, ZHOU Jie, HAN Yao-quan. Assessment of Ecosystem Health of Lijiang River Using Fish-index of Biotic Integrity [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 130-135.
[6] ZHU Yu, CAI De-suo, ZHOU Jie, HAN Yao-quan. Ichthyologic Fauna of Lijiang River,Guilin,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 136-145.
[7] HUANG Xin-wang, LU Yuan, CAI De-suo. System Design for Monitoring and Evaluation of Ecological Health of Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 161-165.
[8] SU Wen-jing, LU Yuan, CAI De-suo. Spatial Analysis of Hydrological Characteristics for Lijiang River Basin Based on GIS [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 166-171.
[9] HE Dong-yan, HUA Cui, LU Yuan. Ecological Risk Assessment of Land Use in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 172-178.
[10] WANG Xiao-chao, CAI De-suo, ZHU Tie-gang, ZHANGYong-xiang, LIN Hong-jun, WU Da-yong. Ecological Effects of Small Dams on Steam Ecosystems in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 179-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .