Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 70-85.doi: 10.16088/j.issn.1001-6600.2023051804

Previous Articles     Next Articles

Two-Stage Robust Optimal Scheduling of Energy Systems in Smart Community Considering Source-Load Uncertainty

YANG Anquan1, DAI Hong1, ZHAO Qingsong2, ZHONG Hao1, MA Hui1*   

  1. 1. China Three Gorges University, College of Electrical Engineering & New Energy, Yichang Hubei 443002, China;
    2. Shenyang university of Technology, School of Electrical Engineering, Shenyang Liaoning 110870, China
  • Received:2023-05-18 Revised:2023-07-25 Online:2024-05-25 Published:2024-05-31

Abstract: To address the impact of uncertainties in both the generation and demand sides of the power system on grid scheduling plans, a two-stage robust optimization model is proposed for integrated source-load uncertainty management. For the generation side, the uncertainties in wind and solar power outputs are considered. Probability density function models are established for wind and solar power, and the Latin hypercube sampling method is employed to generate scenarios and perform scenario reduction, resulting in power output intervals for wind and solar generation. For the demand side, the role of flexible loads in peak shaving and valley filling is considered, and an integrated demand response model based on smart communities is proposed. In the day-ahead stage, aiming to minimize the system operating cost and carbon trading cost while considering source-load uncertainties, a price-based demand response model is developed to determine the day-ahead scheduling plan. In the intra-day stage, based on the optimized results from the day-ahead stage, a two-stage robust optimization model is formulated with the objective of minimizing the operating cost and carbon trading cost of smart communities. The column-and-constraint generation (C&CG) algorithm is employed to convert the objective function, and the Karush-Kuhn-Tucker (KKT) conditions and Big-M constraint method are utilized to transform the max-min optimization problem into a mixed integer linear programming (MILP) model. The correctness of the proposed model and the effectiveness of the algorithm are verified through case studies.

Key words: source charge uncertainty, integrated demand response, two-stage robust optimization, intelligent community, flexible load

CLC Number:  TK01;TM73
[1] 吕佳炜,张沈习,程浩忠,等.考虑互联互动的区域综合能源系统规划研究综述[J].中国电机工程学报,2021,41(12):4001-4020. DOI: 10.13334/j.0258-8013.pcsee.201592.
[2] 黎博,陈民铀,钟海旺,等.高比例可再生能源新型电力系统长期规划综述[J].中国电机工程学报,2023,43(2):555-581. DOI: 10.13334/j.0258-8013.pcsee.212716.
[3] 舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-9. DOI: 10.13334/j.0258-8013.pcsee.162555.
[4] 陆俊,朱炎平,彭文昊,等.计及用电行为聚类的智能小区互动化需求响应方法[J].电力系统自动化,2017,41(17):113-120. DOI: 10.7500/AEPS20161206006.
[5] 伍惠铖,王淳,尹发根,等.考虑负荷转移和多重博弈的智能小区需求响应策略[J].电网技术,2019,43(12):4550-4557. DOI: 10.13335/j.1000-3673.pst.2018.2929.
[6] 廖望,刘东,巫宇锋,等.考虑源荷不确定性及用户响应行为的电力系统低碳经济调度[J].中国电机工程学报,2024,44(3):905-918.DOI: 10.13334/j.0258-8013.pcsee.222369.
[7] 郭尊,李庚银,周明,等.考虑网络约束和源荷不确定性的区域综合能源系统两阶段鲁棒优化调度[J].电网技术,2019,43(9):3090-3100. DOI: 10.13335/j.1000-3673.pst.2019.1113.
[8] 刘一欣,郭力,王成山.微电网两阶段鲁棒优化经济调度方法[J].中国电机工程学报,2018,38(14):4013-4022. DOI: 10.13334/j.0258-8013.pcsee.170500.
[9] 李咸善,王苗.考虑源荷不确定性的多微电网鲁棒优化调度与VCG机制竞价策略[J].电网技术,2023,47(6):2330-2345. DOI: 10.13335/j.1000-3673.pst.2022.0843.
[10] 王灿,张雪菲,凌凯,等.基于区间概率不确定集的微电网两阶段自适应鲁棒优化调度[J/OL].中国电机工程学报:1-14[2024-03-10].http://kns.cnki.net/kcms/detail/11.2107.tm.20230308.1126.021.html.
[11] SABERI-BEGLAR K, ZARE K, SEYEDI H, et al. Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads[J]. Applied Energy, 2023, 329: 120265. DOI: 10.1016/j.apenergy.2022.120265.
[12] 赵冬梅,宋原,王云龙,等.考虑柔性负荷响应不确定性的多时间尺度协调调度模型[J].电力系统自动化,2019,43(22):21-30. DOI: 10.7500/AEPS20190428008.
[13] ZHENG S L, SUN Y, QI B, et al. Incentive-based integrated demand response considering S&C effect in demand side with incomplete information[J]. IEEE Transactions on Smart Grid, 2022, 13(6): 4465-4482. DOI: 10.1109/TSG.2022.3149959.
[14] 孙毅,胡亚杰,郑顺林,等.考虑用户响应特性的综合需求响应优化激励策略[J].中国电机工程学报,2022,42(4):1402-1412. DOI: 10.13334/j.0258-8013.pcsee.202244.
[15] 邓杰,姜飞,王文烨,等.考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行[J].电网技术,2022,46(5):1692-1702. DOI: 10.13335/j.1000-3673.pst.2021.1373.
[16] 彭文昊,陆俊,冯勇军,等.计及用户参与不确定性的需求响应策略优化方法[J].电网技术,2018,42(5):1588-1594. DOI: 10.13335/j.1000-3673.pst.2017.1020.
[17] 蒋程,王硕,王宝庆,等.基于拉丁超立方采样的含风电电力系统的概率可靠性评估[J].电工技术学报,2016,31(10):193-206. DOI: 10.3969/j.issn.1000-6753.2016.10.023.
[18] MANSOURI S A, AHMARINEJAD A, NEMATBAKHSH E, et al. A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources[J]. Energy, 2022, 245: 123228. DOI: 10.1016/j.energy.2022.123228.
[19] 许周,孙永辉,谢东亮,等.计及电/热柔性负荷的区域综合能源系统储能优化配置[J].电力系统自动化,2020,44(2):53-59. DOI: 10.7500/AEPS20190620005.
[20] HOSSEINI S M, CARLI R, DOTOLI M. Robust optimal energy management of a residential microgrid under uncertainties on demand and renewable power generation[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 618-637. DOI: 10.1109/TASE.2020.2986269.
[21] YUAN Z P, LI P, LI Z L, et al. Data-driven risk-adjusted robust energy management for microgrids integrating demand response aggregator and renewable energies[J]. IEEE Transactions on Smart Grid, 2023, 14(1): 365-377. DOI: 10.1109/TSG.2022.3193226.
[22] TSANG M Y, SHEHADEH K S, CURTIS F E. An inexact column-and-constraint generation method to solve two-stage robust optimization problems[J]. Operations Research Letters, 2023, 51(1): 92-98. DOI: 10.1016/j.orl.2022.12.002.
[23] 薛开阳,楚瀛,凌梓,等.考虑柔性负荷的综合能源系统低碳经济优化调度[J].可再生能源,2019,37(8):1206-1213. DOI: 10.3969/j.issn.1671-5292.2019.08.016.
[24] 刘蓉晖,李子林,杨秀,等.考虑用户侧柔性负荷的社区综合能源系统日前优化调度[J].太阳能学报,2019,40(10):2842-2850. DOI: 10.19912/j.0254-0096.2019.10.018.
[25] 陈灵敏,吴杰康,张文杰,等.基于鲁棒优化的微能源网综合需求响应协同调度策略[J].电力系统自动化,2021,45(21):159-169. DOI: 10.7500/AEPS20210201001.
[26] 周特,薛云飞,季节,等.考虑电力间接碳排放不确定性的电-冷-热综合能源系统两阶段鲁棒优化方法[J].电网技术,2024,48(1):50-60. DOI: 10.13335/j.1000-3673.pst.2023.0471.
[27] 尚文强,李广磊,丁月明,等.考虑源荷不确定性和新能源消纳的综合能源系统协同调度方法[J].电网技术,2024,48(2):517-532.DOI: 10.13335/j.1000-3673.pst.2023.0577.
[1] YAN Wenwen, WEN Zhong, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi. AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 55-68.
[2] GAN Youchun, WANG Can, HE Xuhui, ZHANG Yu, ZHANG Xuefei, WANG Fan, YU Yazhou. Joint Optimal Operation of Integrated Electricity-Hydrogen-Heat Energy System Based on Concentrating Solar Power Plant and Flexible Load [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 69-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Xianjiang, SHI Shuqin, CAI Weimin, CAO Yuqing. Simulation of Land Use Change in Tianjin Binhai New Area Based on CA-Markov Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 133 -143 .
[2] QIN Yingying, QI Guangchao, LIANG Shichu. Effects of Eichhornia crassipes Aqueous Extracts on Seed Germination of Ottelia acuminata var. jingxiensis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 87 -92 .
[3] LI Yuhui, CHEN Zening, HUANG Zhonghao, ZHOU Qihai. Activity Time Budget of Assamese macaque (Macaca assamensis) during Rainy Season in Nonggang Nature Reserve, Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 80 -86 .
[4] MENG Chunmei, LU Shiyin, LIANG Yonghong, MO Xiaomin, LI Weidong, HUANG Yuanjie, CHENG Xiaojing, SU Zhiheng, ZHENG Hua. Electron Microscopy Study on the Apoptosis and Autophagy of the Hepatic Stellate Cells Induced by Total Alkaloids[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 76 -79 .
[5] MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25 -31 .
[6] HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Beddington-DeAngelis Functional Response[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 32 -40 .
[7] DAI Xisheng. Iterative Learning Control of Dam-River Channel Irrigation Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 53 -60 .
[8] WEN Yuzhuo, TANG Shengda, DENG Guohe. Analysis of the Ruin Time of Threshold Dividend Strategy Risk Model under Stochastic Environment[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 56 -62 .
[9] XIA Haiying,LIU Weitao,ZHU Yongjian. An Improved Fast SUSAN Chessboard Corner Detection Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 44 -52 .
[10] LIANG Yan. Non-alkaloid Chemical Constituents from the Chinese Medical Plant Stephania dielsiana[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 95 -98 .