Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 59-69.doi: 10.16088/j.issn.1001-6600.2023052101

Previous Articles     Next Articles

Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles

CHEN Li, TANG Mingzhu, GUO Shenghui*   

  1. School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou Jiangsu 215009, China
  • Received:2023-05-21 Revised:2023-07-21 Published:2024-05-31

Abstract: The problem of state estimation and attack signal reconstruction for cyber-physical systems of the nonlinear descriptor system type under network attack is investigated. Firstly, the descriptor system is transformed into a general system, and the intermediate variable observer is designed by reconstructing the attack signal with the intermediate variable. Then, sufficient conditions for the existence of the observer gain matrix are obtained by linear matrix inequalities. Finally, the feasibility of the method is verified by numerical simulation. In the simulation analysis, the lane-keeping system of the intelligent vehicle is modeled, and the vehicle dynamic model and the vehicle keeping model are transformed into the form of a dynamic system. From the perspective of cyber-physical systems, the problem of vehicle safety state estimation is studied. When the system contains network attacks, the proposed observer is used to estimate the state of the lane-keeping system. The results show that the designed intermediate variable observer can accurately estimate the system state and attack signal, and the error systems tend to be stable within 4 s.

Key words: cyber-physical systems, state estimation, intermediate variable observer, attack reconstruction, intelligent vehicle

CLC Number:  TP13
[1] DUO W L, ZHOU M C, ABUSORRAH A. A survey of cyber attacks on cyber physical systems: recent advances and challenges[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(5): 784-800. DOI: 10.1109/JAS.2022.105548.
[2] LU Y L, HUANG X H, DAI Y Y, et al. Federated learning for data privacy preservation in vehicular cyber-physical systems[J]. IEEE Network, 2020, 34(3): 50-56. DOI: 10.1109/MNET.011.1900317.
[3] LEE I, SOKOLSKY O, CHEN S J, et al. Challenges and research directions in medical cyber-physical systems[J]. Proceedings of the IEEE, 2012, 100(1): 75-90. DOI: 10.1109/JPROC.2011.2165270.
[4] DONG Z C, TIAN M, LI X, et al. Mitigating cascading failures of spatially embedded cyber-physical power systems by adding additional information links[J]. Reliability Engineering & System Safety, 2022, 225: 108559. DOI: 10.1016/j.ress.2022.108559.
[5] LU C Y, SAIFULLAH A, LI B, et al. Real-time wireless sensor-actuator networks for industrial cyber-physical systems[J]. Proceedings of the IEEE, 2016, 104(5): 1013-1024. DOI: 10.1109/JPROC.2015.2497161.
[6] LU A Y, YANG G H. Stability analysis for cyber-physical systems under denial-of-service attacks[J]. IEEE Transactions on Cybernetics, 2021, 51(11): 5304-5313. DOI: 10.1109/TCYB.2020.2986008.
[7] AHMED C M, PALLETI V R, MISHRA V K. A practical physical watermarking approach to detect replay attacks in a CPS[J]. Journal of Process Control, 2022, 116: 136-146. DOI: 10.1016/j.jprocont.2022.06.002.
[8] ZHANG T Y, YE D. False data injection attacks with complete stealthiness in cyber-physical systems: a self-generated approach[J]. Automatica, 2020, 120: 109117. DOI: 10.1016/j.automatica.2020.109117.
[9] YE L, ZHU F L, ZHANG J. Sensor attack detection and isolation based on sliding mode observer for cyber-physical systems[J]. International Journal of Adaptive Control and Signal Processing, 2020, 34(4): 469-483. DOI: 10.1002/acs.3094.
[10] CHOWDHURY N R, BELIKOV J, BAIMEL D, et al. Observer-based detection and identification of sensor attacks in networked CPSs[J]. Automatica, 2020, 121: 109166. DOI: 10.1016/j.automatica.2020.109166.
[11] ZHU J W, YANG G H, WANG H, et al. Fault estimation for a class of nonlinear systems basedon intermediate estimator[J]. IEEE Transactions on Automatic Control, 2016, 61(9): 2518-2524. DOI: 10.1109/TAC.2015.2491898.
[12] ZHU J W, WANG Q, DING S X, et al. Performance guaranteed attack reconstruction for cyber-physical systems: a new intermediate estimator-based framework[J]. Automatica, 2022, 142(C): 110388. DOI: 10.1016/j.automatica.2022.110388.
[13] SU Q Y, WANG H D, SUN C W, et al. Cyber-attacks against cyber-physical power systems security: State estimation, attacks reconstruction and defense strategy[J]. Applied Mathematics and Computation, 2022, 413: 126639. DOI: 10.1016/j.amc.2021.126639.
[14] SAEED JALALI S M, AKBARZADEH KALAT A. A robust state estimation for a class of uncertain linear time-invariant descriptor systems[J]. Asian Journal of Control, 2022, 24(1): 355-366. DOI: 10.1002/asjc.2454.
[15] LI L, LU Y S, WANG R R, et al. A three-dimensional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with MPC[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3389-3401. DOI: 10.1109/TIE.2016.2583400.
[16] CHEN J, SUN D H, ZHAO M, et al. A new lane keeping method based on human-simulated intelligent control[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7058-7069. DOI: 10.1109/TITS.2021.3066586.
[17] LI R J, LI Y N, LI S E, et al. Indirect shared control for cooperative driving between driver and automation in steer-by-wire vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7826-7836. DOI: 10.1109/TITS.2020.3010620.
[18] VATANPARVAR K, FAEZI S, BURAGO I, et al. Extended range electric vehicle with driving behavior estimation in energy management[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 2959-2968. DOI: 10.1109/TSG.2018.2815689.
[19] HU C, WANG R R, YAN F J, et al. Robust composite nonlinear feedback path-following control for underactuated surface vessels with desired-heading amendment[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6386-6394. DOI: 10.1109/TIE.2016.2573240.
[20] 马小博,彭嘉豪,薛磊,等.5G时代车联网信息物理融合系统综合安全研究[J].中国科学(信息科学),2019,49(12):1640-1658.
[21] GUO X G, XU W D, WANG J L, et al. Distributed neuroadaptive fault-tolerant sliding-mode control for 2-D plane vehicular platoon systems with spacing constraints and unknown direction faults[J]. Automatica, 2021, 129(C): 109675. DOI: 10.1016/j.automatica.2021.109675.
[22] 易星,曹青松.含网络攻击的智能网联汽车路径跟踪状态估计与控制[J].机械科学与技术,2024,43(1):159-165. DOI: 10.13433/j.cnki.1003-8728.20220205.
[23] WANG Z H, SHEN Y, ZHANG X L, et al. Observer design for discrete-time descriptor systems: an LMI approach[J]. Systems & Control Letters, 2012, 61(6): 683-687. DOI: 10.1016/j.sysconle.2012.03.006.
[24] 卢许孟,南新元,夏斯博.无模型坐标补偿积分滑模约束的自动驾驶汽车轨迹跟踪控制[J].广西师范大学学报(自然科学版),2023,41(2):36-48. DOI: 10.16088/j.issn.1001-6600.2022042004.
[25] 孔旭,封学欣,王友清.含有积分测量和时滞的T-S模糊系统的H故障诊断[J].山东科技大学学报(自然科学版),2021,40(6):98-109. DOI: 10.16452/j.cnki.sdkjzk.2021.06.012.
[26] 唐明珠,张雯阳,郭胜辉.信息物理系统状态估计与传感器攻击检测[J].信息与控制,2021,50(5):609-615. DOI: 10.13976/j.cnki.xk.2021.0593.
[27] JABBARI F, BENSON R W. Observers for stabilization of systems with matched uncertainty[J].Dynamics and Control, 1992, 2(3): 303-323. DOI: 10.1007/BF02169519.
[1] ZHAO Wei-qi, LIANG Jia-rong, LI Xia. Finite-time Terminal Sliding Mode Control for Singular Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!