Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 159-169.doi: 10.16088/j.issn.1001-6600.2023062001

Previous Articles     Next Articles

Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring

ZHU Yan, CAI Jing*, LONG Fang   

  1. School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang Guizhou 550025, China
  • Received:2023-06-20 Revised:2023-07-25 Published:2024-05-31

Abstract: Under Type I hybrid censoring, the statistical analysis of step stress partially accelerated life tests for compound Rayleigh distribution competing failure products is studied.Based on the compound Rayleigh distribution competing failure products and tampered failure rate (TFR) model, the maximum likelihood estimation and asymptotic confidence interval of unknown parameters and acceleration factors are given by using the maximum likelihood theory and asymptotic approximation theory.The prior information of the unknown parameters and acceleration factors is selected, and the Bayesian estimation and the highest posterior probability density confidence interval (HPD) of the unknown parameters and acceleration factors are obtained by using the MH sampling algorithm. Finally, the two estimation methods are compared by Monte Carlo simulation. The results indicate that Bayesian estimation overall outperforms maximum likelihood estimation (MLE). At the same confidence level, the length of HPD based on Bayes estimation is superior to that of the asymptotic confidence interval based on MLE.

Key words: competing failure, step stress partially accelerated life tests, compound Rayleigh distribution, maximum likelihood estimation, Bayesian estimation

CLC Number:  O213.2
[1] 鄢伟安, 杨海军, 周俊杰. 基于自适应逐步Ⅱ型混合截尾试验Burr-Ⅻ分布的统计分析[J].系统工程理论与实践, 2020, 40(5): 1339-1349.
[2] 林慧中, 王亮. 考虑交互效应的双应力恒加试验可靠性推断[J]. 昆明理工大学学报(自然科学版), 2023, 48(1): 180-192.
[3] NASSAR M, ELSHAHHAT A. Statistical analysis of inverse Weibull constant-stress partially accelerated life tests with adaptive progressively type I censored data[J]. Mathematics, 2023, 11(2): 370.
[4] 师义民, 师小琳. 竞争失效产品部分加速寿命试验的统计分析[J]. 西北工业大学学报, 2017, 35(1): 109-115.
[5] AKGUL F G, YU K, SENOGLU B. Classical and Bayesian inferences in step-stress partially accelerated life tests for inverse Weibull distribution under type-I censoring[J]. Strength of Materials, 2020, 52(3): 480-496.
[6] EL-SAGHEER R M, MAHMOUD M A W, NAGATY H. Inferences for Weibull-exponential distribution based on progressive type-II censoring under step-stress partially accelerated life test model[J]. Journal of Statistical Theory and Practice, 2018, 13(1): 14.
[7] MOHAMEDM A W, EL-SAGHEER R M., ABOU SENNA A M. Estimating the modified Weibull parameters in presence of step-stress partially accelerated life testing[J]. Journal of Statistics Applications & Probability, 2018, 7(1): 137-150.
[8] ALJOHANIH M, ALFAR N M. Estimations with step-stress partially accelerated life tests for competing risks Burr XII lifetime model under type-II censored data[J]. Alexandria Engineering Journal, 2020, 59(3): 1171-1180.
[9] REN J R, GUI W H. Inference and optimal censoring scheme for progressively type-II censored competing risks model for generalized Rayleigh distribution[J]. Computational Statistics, 2021, 36: 479-513.
[10] ZHANG C F, SHI Y M, WU M. Bayesian inference on type-I progressively hybrid competing risks model[J]. Chinese Quarterly Journal of Mathematics, 2018, 33(2): 122-131.
[11] WU M, SHI Y M, SUN Y D. Inference for accelerated competing failure models from Weibull distribution under type-I progressive hybrid censoring[J]. Journal of Computational and Applied Mathematics, 2014, 263: 423-431.
[12] ABU-ZINADAH H H, SAYED-AHMED N. Competing risks model with partially step-stress accelerate life tests in analyses lifetime Chen data under type-II censoring scheme[J]. Open Physics, 2019, 17(1): 192-199.
[13] 王琪, 兰海英. 复合Rayleigh分布模型尺度参数的Bayes估计[J]. 科学技术与工程, 2012, 12(30): 7980-7982.
[14] ABUSHAL T A. Estimation of the unknown parameters for the compound Rayleigh distribution based on progressive first-failure-censored sampling[J]. Open Journal of Statistics, 2011, 1(3): 161-171.
[15] 邵媛媛, 周菊玲, 董翠玲. 双边定时截尾样本下复合瑞利分布的参数估计[J].淮阴师范学院学报(自然科学版), 2019, 18(2): 95-100.
[16] BAROT D R, PATEL M N. Posterior analysis of the compound Rayleigh distribution under balanced loss functions for censored data[J]. Communications in Statistics-Theory and Methods, 2017, 46(3): 1317-1336.
[17] 王琪, 兰海英, 徐刚. 复合瑞利分布模型参数的Bayes可靠性分析[J]. 江西师范大学学报(自然科学版), 2013, 37(1): 20-22.
[18] GHITANY M E. A compound Rayleigh survival model and its application to randomly censored data[J]. Statistical Papers, 2001, 42(4): 437-450.
[19] BEKKER A, ROUX J J J, MOSTEIT P J. A generalization of the compound Rayleigh distribution: using a Bayesian method on cancer survival times[J]. Communications in Statistics-Theory and Methods, 2000, 29(7): 1419-1433.
[20] BHATTACHARYYA G K, SOEJOETI Z. A tampered failure rate model for step-stress accelerated life test[J]. Communications in Statistics-Theory and Methods, 1989, 18(5): 1627-1643.
[21] EL-SAGHEER R M, AHSANULLAH M. Bayesianestimation based on progressively type-II censored samples from compound Rayleigh distribution[J]. Journal of Statistical Theory and Applications, 2015, 14(2):107-122.
[22] GEWEKE J, TANIZAKI H. Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling[J]. Computational Statistics and Data Analysis, 2001, 37(2): 151-170.
[1] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131-140.
[2] LONG Fang, CAI Jing, ZHU Yan. Analysis of Reliability in a Multicomponent Stress-Strength Model for Lomax Distribution under Progressive type-Ⅱ Hybrid Censoring [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 120-130.
[3] SUN Ye, JIANG Jingjing, WANG Chunjie. Bayesian Estimation of Current Status Data with Generalized Extreme Value Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 82-90.
[4] LIANG Xin, CHEN Xiaoling, ZHANG Xingfa, LI Yuan. A Class of Autoregressive Moving Average Model with GARCH Type Errors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 195-205.
[5] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68-78.
[6] YANG Xiaowei, ZHANG Junjian. Law of Iterated Logarithm and Strong Consistency for Negative Binomial Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 59-69.
[7] DING Xin-yue, XU Mei-ping. Bayesian Estimation for Scale Parameter of Inverse Gamma Distribution under Mlinex Loss Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 61-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!