Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 69-83.doi: 10.16088/j.issn.1001-6600.2023050506

Previous Articles     Next Articles

Joint Optimal Operation of Integrated Electricity-Hydrogen-Heat Energy System Based on Concentrating Solar Power Plant and Flexible Load

GAN Youchun1, WANG Can1*, HE Xuhui1, ZHANG Yu1, ZHANG Xuefei1, WANG Fan1, YU Yazhou2   

  1. 1. School of Electrical and New Energy, China Three Gorges University, Yichang Hubei 443002, China;
    2. State Grid Hubei Central China Technology Development of Electric Power Co., Ltd., Wuhan Hubei 430077, China
  • Received:2023-05-05 Revised:2023-07-05 Published:2024-04-22

Abstract: In order to solve the problems of poor operation flexibility and difficulty in the wind and solar absorption of the existing integrated energy system, and at the same time, to make full use of hydrogen energy to achieve carbon emission reduction goals, a joint optimal operation method of electricity-hydrogen-heat integrated energy system based on concentrating solar power plant and flexible load is proposed. Firstly, based on the model of concentrating solar power plant and a hydrogen energy system with waste heat utilization containing electricity to hydrogen, an integrated energy system of electricity-hydrogen-heat is constructed. Secondly, based on the characteristics and adjustment value of the electricity-hydrogen-heat flexible load on the demand side, a model of electricity-hydrogen-heat flexible load with translational and transferable load reduction is constructed. Then a joint optimization operation model of electricity-hydrogen-heat integrated energy system based on the characteristics of electricity-hydrogen-heat flexible load regulation is further constructed. Finally, the simulation of the proposed method can balance economic operation and low-carbon effect, which can not only improve the joint operation capacity of concentrating solar power plant and hydrogen energy system but also effectively improve the operating economy and low carbon of the system. The peak-to-valley difference of electricity, hydrogen and heat load is reduced by 6.68%, 11.95% and 8.35%, respectively. Besides, the total operating cost of the system is reduced by 24.4%.

Key words: electricity-hydrogen-heat integrated energy system, flexible load, concentrating solar power plant, waste heat utilization, optimal operation

CLC Number:  TM73; TK01
[1] 张沈习,王丹阳,程浩忠,等.双碳目标下低碳综合能源系统规划关键技术及挑战[J].电力系统自动化,2022,46(8):189-207. DOI: 10.7500/AEPS20210703002.
[2] 黎博,陈民铀,钟海旺,等.高比例可再生能源新型电力系统长期规划综述[J].中国电机工程学报,2023,43(2):555-581. DOI: 10.13334/j.0258-8013.pcsee.212716.
[3] 童光毅.基于双碳目标的智慧能源体系构建[J].智慧电力,2021,49(5):1-6. DOI: 10.3969/j.issn.1673-7598.2021.05.002.
[4] 张大海,贠韫韵,王小君,等.计及光热电站及建筑热平衡的冷热电综合能源系统优化运行[J].高电压技术,2022,48(7):2505-2514. DOI: 10.13336/j.1003-6520.hve.20220828.
[5] 王一凡,王辉,李旭阳,等.电氢混合储能微电网容量配置优化的研究综述[J].广西师范大学学报(自然科学版),2022,40(6):18-36. DOI: 10.16088/j.issn.1001-6600.2022011901.
[6] 张大海,贠韫韵,王小君,等.考虑广义储能及光热电站的电热气互联综合能源系统经济调度[J].电力系统自动化,2021,45(19):33-42. DOI: 10.7500/AEPS20210220002.
[7] 杨宏基,周明,武昭原,等.含光热电站的电-热能源系统优化运行机制[J].电网技术,2022,46(1):175-184. DOI: 10.13335/j.1000-3673.pst.2021.0825.
[8] 崔杨,张家瑞,仲悟之,等.计及电热转换的含储热光热电站与风电系统优化调度[J].中国电机工程学报,2020,40(20):6482-6493. DOI: 10.13334/j.0258-8013.pcsee.191635.
[9] 董海鹰,贠韫韵,马志程,等.计及多能转换及光热电站参与的综合能源系统低碳优化运行[J].电网技术,2020,44(10):3689-3699. DOI: 10.13335/j.1000-3673.pst.2020.0449.
[10] 粟世玮,郝翊彤,宋玉娇,等.含风电-氢能-电转气的园区综合能源系统优化调度[J].广西师范大学学报(自然科学版),2023,41(1):48-57. DOI: 10.16088/j.issn.1001-6600.2022030306.
[11] 陈锦鹏,胡志坚,陈颖光,等.考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J].电力自动化设备,2021,41(9):48-55. DOI: 10.16081/j.epae.202109032.
[12] 黄冬梅,陈柯翔,孙锦中,等.含电解制氢装置及光热电站的海岛微网优化调度[J].电力系统及其自动化学报,2022,34(11):24-31. DOI: 10.19635/j.cnki.csu-epsa.000966.
[13] 张虹,孟庆尧,王明晨,等.考虑火电机组参与绿证购买交易的含氢综合能源系统经济低碳调度策略[J].电力系统保护与控制,2023,51(3):26-35. DOI: 10.19783/j.cnki.pspc.220873.
[14] 黄冬梅,吴涵文,孙锦中,等.计及阶梯式碳交易机制的海岛综合能源优化调度[J].电力系统及其自动化学报,2023,35(4):93-99. DOI: 10.19635/j.cnki.csu-epsa.001090.
[15] 程瑜,陈熙.基于源-荷-储互动的储能对风电消纳能力影响分析[J].电力系统自动化,2022,46(13):84-93. DOI: 10.7500/AEPS20210701001.
[16] 周长城,马溪原,郭晓斌,等.基于主从博弈的工业园区综合能源系统互动优化运行方法[J].电力系统自动化,2019,43(7):74-80. DOI: 10.7500/AEPS20180604007.
[17] 胡荣,张宓璐,李振坤,等.计及可平移负荷的分布式冷热电联供系统优化运行[J].电网技术,2018,42(3):715-721. DOI: 10.13335/j.1000-3673.pst.2017.2313.
[18] 许周,孙永辉,谢东亮,等.计及电/热柔性负荷的区域综合能源系统储能优化配置[J].电力系统自动化,2020,44(2):53-59. DOI: 10.7500/AEPS20190620005.
[19] 林俐,顾嘉,张玉.基于含源型负荷用电需求弹性及偏好成本的电热联合优化调度[J].电网技术,2020,44(6):2262-2270. DOI: 10.13335/j.1000-3673.pst.2019.2044.
[20] 潘郑楠,梁宁,徐慧慧,等.基于纳什谈判理论的风电-虚拟氢厂参与现货市场合作运行策略[J].电力自动化设备,2023,43(5):129-137. DOI: 10.16081/j.epae.202301008.
[21] 邱革非,何超,骆钊,等.考虑源、荷不确定性的工业园区电-气互联综合能源系统模糊优化调度[J].电力自动化设备,2022,42(5):8-14. DOI: 10.16081/j.epae.202201015.
[22] 高乾恒,黄帅飞,李二超,等.市场环境下含氢储能的售电公司优化调度[J].电力建设,2019,40(4):42-48. DOI: 10.3969/j.issn.1000-7229.2019.04.006.
[23] 贠韫韵,董海鹰,马志程,等.考虑需求响应与光热电站参与的多源系统优化经济调度[J].电力系统保护与控制,2020,48(14):140-149. DOI: 10.19783/j.cnki.pspc.191042.
[1] ZHAO Di, WEN Zhong, WU Qian, YAN Wenwen, QIN Zhiyin, WANG Boyu. Low-Carbon Optimal Scheduling of Integrated Energy System under Electro-Thermal Coupling of 5G Base Station and Concentrated Solar Power Plant [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 47-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Yi,YE Xuemei,XIAO Miyun,L Lijun,HOU Chengyou,LU Zujun. The Preliminary Screening of Hypaphorine High-accumulationStrain by Using the Quick Fluorescent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 141 -148 .
[2] YUAN Jingjing, ZHENG Yuzhao, XU Chenfeng, YIN Tingjie. Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 1 -8 .
[3] TU Guangsheng, KONG Yongjun, SONG Zhechao, YE Kang. Research Progress and Technical Difficulties of Reversible Data Hiding in Encrypted Domain[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 1 -15 .
[4] YANG Yangyang, ZHU Zhenting, YANG Cuiping, LI Shihao, ZHANG Shu, FAN Xiulei, WAN Lei. Research Progress of Anaerobic Digestion Pretreatment of Excess Activated Sludge Based on Bibliometric Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 16 -29 .
[5] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30 -40 .
[6] YANG Hai, XIE Yaqin. Regional Energy Storage Allocation Strategy of 5G Base Station Based on Floyd Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 41 -54 .
[7] YAN Wenwen, WEN Zhong, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi. AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 55 -68 .
[8] WANG Xuyang, WANG Changrui, ZHANG Jinfeng, XING Mengyi. Multimodal Sentiment Analysis Based on Cross-Modal Cross-Attention Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 84 -93 .
[9] WANG Weiduo, WANG Yisong, YANG Lei. Descriptive Solution of the Answer Set Programming for Cloud Resource Scheduling[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 94 -104 .
[10] YU Qian, CHEN Qingfeng, HE Naixu, HAN Zongzhao, LU Jiahui. Genetic Algorithm for Community Detection Accelerated by Matrix Operations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 105 -119 .