Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (2): 49-57.doi: 10.16088/j.issn.1001-6600.2022032504

Previous Articles     Next Articles

Travel Time Estimation Method of Urban Expressway Section

ZHANG Weijian1, BING Qichun1*, SHEN Fuxin1, HU Yanran1, GAO Peng2   

  1. 1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao Shandong 266520, China;
    2. Qingdao Transportation Public Service Center, Qingdao Shandong 266100, China
  • Received:2022-03-25 Revised:2022-04-29 Online:2023-03-25 Published:2023-04-25

Abstract: In order to effectively improve the travel time estimation accuracy of urban expressway sections, this paper presents a travel time estimation method based on adaptive filtering and grid virtual vehicle. The velocity data between fixed detectors are obtained by adaptive smoothing filter interpolation, and the spatiotemporal velocity field between fixed detectors is reconstructed. Then the reconstructed velocity field is subdivided into several grid elements. The road travel time is estimated by calculating the virtual trajectory of the virtual vehicle in the reconstructed space-time velocity field. Finally, the measured data of induction coil on urban expressway are selected for example verification.The experimental results show that the root mean square error of this method is 0.15, 0.35 and 1.06, respectively, and the average relative error is less than 10%, so it has high estimation accuracy.

Key words: traffic engineering, travel time estimation, adaptive smoothing filter, velocity field reconstruction, grid virtual car

CLC Number: 

  • U491
[1] 罗小芹. 城市道路行程时间特性分析及估计[D]. 杭州: 浙江大学, 2020.
[2] 钟绍鹏, 何璟, 朱康丽, 等. 基于建成环境和低频浮动车数据的路段行程时间估计[J]. 交通运输系统工程与信息, 2021, 21(4): 125-131. DOI: 10.16097/j.cnki.1009-6744.2021.04.015.
[3] 罗霞, 曹阳, 刘博, 等. 基于浮动车数据的城市道路行程时间估计[J]. 交通运输系统工程与信息, 2018,16(2): 1-8. DOI: 10.3969/j.issn.1672-4747.2018.02.001.
[4] 宋承波, 燕雪峰。一种浮动车技术的道路行程时间估计方法[J]. 小型微型计算机系统,2018,39(9): 2098-2102.
[5] 程娟. 基于浮动车的行程时间估计与预测及动态路径优化方法研究[D]. 南京: 东南大学, 2019.
[6] 唐坤. 数据驱动的城市路网行程时间估计与预测方法研究[D]. 南京: 东南大学, 2019.
[7] 张坤鹏. 基于深度学习的行程时间估计方法研究[D]. 长沙: 湖南大学, 2019.
[8] 宋茜. 城市快速路路段行程时间估计与预测方法研究[D]. 北京: 北京交通大学, 2015.
[9] 张腾月, 翁小雄.基于收费数据的高速公路行程时间可靠性估计模型[J]. 广西师范大学学报(自然科学版),2016,34(4): 70-77. DOI: 10.16088/j.issn.1001-6600.2016.04.011.
[10] 姜桂艳, 李继伟, 张春勤. 城市主干路拥挤路段基于地点交通参数的行程速度估计[J]. 吉林大学学报(工学版),2010,40(5): 1203-1208.
[11] 姚午开. 基于智能算法的高速公路行程时间估计研究[D]. 长沙: 长沙理工大学, 2019.
[12] BING Q C, QU D Y, CHEN X F, et al. Arterial travel time estimation method using SCATS traffic data based on KNN-LSSVR model[J]. Advances in Mechanical Engineering, 2019, 11(5): 1-11. DOI: 10.1177/1687814019841926.
[13] JIN G Y, WANG M, ZHANG J L, et al. STGNN-TTE: Travel time estimation via spatial-temporal graph neural network[J]. Future Generation Computer Systems,2022,126: 70-81. DOI: 10.1016/j.future.2021.07.012.
[14] 姜桂艳, 李琦, 董硕. 基于k-NN和SCATS交通数据的路段行程时间估计方法[J]. 西南交通大学学报, 2013,48(2): 343-349. DOI: 10.3969/j.issn.0258-2724.2013.02.024.
[15] ROBINSON S,POLAK J W. Modeling urban link travel time with inductive loop detector data by using the k-NN method[J]. Transportation Research Record,2005,1935(1): 47-56. DOI: 10.3141/1935-06.
[16] MAK W K, VITI F, HOOGENDOORN S P, et al. Online travel time estimation in urban areas using the occupancy of long loop detectors[J]. IFAC Proceedings Volumes,2009, 42(15): 383-390.
[17] GHOLAMI A,WANG D B, DAVOODI S R, et al. An adaptive neural fuzzy inference system model for freeway travel time estimation based on existing detector facilities[J]. Case Studies on Transport Policy, 2021,9(4): 1600-1606. DOI: 10.1016/j.cstp.2021.08.009.
[18] 邓毅萍, 冉旭, 丁闪闪, 等. 包含出入口匝道的高速公路路段行程时间估计方法[J]. 交通信息与安全, 2015,33(2): 63-68. DOI: 10.3963/j.issn1674-4861.2015.02.010.
[19] 黄艳国, 许伦辉, 邝先验. 模糊卡尔曼滤波在快速路行程时间估计中的应用[J]. 吉林大学学报(工学版), 2014,44(3): 648-654. DOI: 10.13229/j.cnki.jdxbgxb201403011.
[20] 张和生, 张毅, 胡东成. 路段平均行程时间估计方法[J]. 交通运输工程学报, 2008,8(1): 89-96. DOI: 10.3321/j.issn:1671-1637.2008.01.018.
[21] 杨兆升, 高学英, 林赐云, 等. 基于路段下游检测线圈的路段行程时间估计[J]. 北京工业大学学报,2010,36(6): 790-795.
[22] 徐天东, 孙立军, 郝媛. 城市快速路实时交通状态估计和行程时间预测[J]. 同济大学学报(自然科学版), 2008, 36(10): 1355-1361.
[23] 谢东繁, 贾惠迪, 李春艳, 等. 基于网格交通状态分类的行程时间规律挖掘与计算[J]. 交通运输系统工程与信息, 2022, 22(3): 168-178.
[24] 陈娇娜, 张翔, 张生瑞.高速公路行程时间Bootstrap-KNN区间预测分析与实证[J]. 控制与决策,2018,33(11): 2080-2086. DOI: 10.13195/j.kzyjc.2017.0729.
[25] CAO J,DU Y C,MAO L, et al. Improved DTTE method for route-level travel time estimation on freeways[J]. Journal of Transportation Engineering, Part A: Systems,2022,148(2): 04021113. DOI: 10.1061/JTEPBS.0000636.
[26] YANG S, OU J S,FENG Y H, et al. Freeway travel time estimation based on the generalmotors model: a genetic algorithm calibration framework[J]. IET Intelligent Transport Systems,2019,13(7): 1154-1163. DOI: 10.1049/iet-its.2018.5540.
[27] TREIBER M, HELBING D. Reconstructing the spatio-temporal traffic dynamics from stationary detector data[J]. Cooperative Transportation Dynamic, 2002,1(3): 1-24.
[1] KUANG Xian-yan, WU Yun, CAO Wei-hua, WU Yin-feng. Cellular Automata Simulation Model for Urban MixedNon-motor Vehicle Flow [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 7-14.
[2] YUAN Le-ping, SUN Rui-shan. Probabilistic Safety Assessment of Air Traffic Conflict Resolution [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 27-31.
[3] CHEN Si-yi, LUO Qiang, HUANG Hui-xian. Division Method of Coordinated Control Sub-areas Based on Group Decision Making Theory and Support Vector Machine [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 18-25.
[4] XU Lun-hui, LIAO Ran-kun. Signal Phasing-Sequence Optimization of Intersection Based on Traffic Track [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 5-9.
[5] XU Lun-hui, LUO Qiang, FU Hui. Car-following Safe Distance Model Based on Braking Process of Leading Vehicle [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Zhengchun. Research Progress of Complementary Sequences[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 1 -16 .
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1 -18 .
[3] YANG Shenglong, MU Qingchuang, ZHANG Zhihua, LIU Kui. Technical Progress in Recovery and Utilization of Spent Lithium-ion Batteries[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 19 -26 .
[4] LI Kangliang, QIU Caixiong, HE Shuang, HUANG Chunhua, WU Guanyi. Research Progress of IL-31 in Itch[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 27 -35 .
[5] LU Xumeng, NAN Xinyuan, XIA Sibo. Trajectory Tracking Control Based on Model-Free Coordinate Compensation Integral Sliding Mode Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 36 -48 .
[6] YANG Xiu, WEI Duqu. Chaos Tracking Control of Permanent Magnet Synchronous Motor Based on Single State Variable[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 58 -66 .
[7] ZHAO Yuan, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, CAI Chaobo, JIANG Pinqun. Design of a Novel Current-Mirror Operational Transconductance Amplifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 67 -75 .
[8] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76 -85 .
[9] ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86 -97 .
[10] YANG Xiufeng, FAN Jianghua. Connectedness of the Strong Efficient Solution Set for Vector Equilibrium Problems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 98 -105 .