Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (2): 138-146.doi: 10.16088/j.issn.1001-6600.2022040401

Previous Articles     Next Articles

Preparation of UV Resistant and Super Hydrophobic Multifunctional Fabric PDMS/RGO-CO by PDMS Blended Solution

SU Yingjie1, WANG Dafei2, YANG Wen1, ZHANG Mengyang3, HOU Dongrui3, LUO Jing1, SUN Qinggong1, YANG Hao3, WANG Jianfeng3*   

  1. 1. School of Chemical Engineering, Zhengzhou University, Zhengzhou Henan 450000, China;
    2. Department of Basic Medicine, Zhengzhou Health Vocational College, Zhengzhou Henan 450000, China;
    3. College of Ecology and Environment, Zhengzhou University, Zhengzhou Henan 450000, China
  • Received:2022-04-04 Revised:2022-05-13 Online:2023-03-25 Published:2023-04-25

Abstract: Multi-functional cotton fabric (CO) can expand the application range of cotton fabric. In this paper, a multi-functional cotton fabric (PDMS/RGO-CO) with UV resistance and super hydrophobicity was prepared for the first time by combining n-hexane and ethyl acetate as the co-solvent of polydimethylsiloxane (PDMS) and reduced graphene oxide (RGO). The optimum condition was developed by changing the mixture ratio of n-hexane and ethyl acetate, impregnation times with cotton fabric immersed in RGO dispersion and PDMS concentration. The results showed that multi-functional cotton fabric (PDMS/RGO-CO) had the best super hydrophobicity when the volume ratio of n-hexane to ethyl acetate was 7∶3, the impregnation times of cotton fabric was 2 times, the PDMS concentration was 100 g/L, the contact angle (CA) was 165.9°, and the ultraviolet protection coefficient (UPF) was 544.46. At the same time, PDMS/RGO-CO also showed excellent anti-fouling performance and oil-water separation ability.

Key words: cotton fabric, polydimethylsiloxane (PDMS), reduced graphene oxide, super hydrophobic, UV resistance, oil/water separation

CLC Number: 

  • TQ426.94
[1] LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. DOI: 10.1016/j.jcis.2018.08.060.
[2] ZHU T X, LI S H, HUANG J Y, et al. Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation[J]. Materials & Design, 2017, 134: 342-351. DOI: 10.1016/j.matdes.2017.08.071.
[3] SHEN Y, ZHEN L L, HUANG D, et al. Improving anti-UV performances of cotton fabrics via graft modification using a reactive UV-absorber[J]. Cellulose, 2014, 21(5): 3745-3754. DOI: 10.1007/s10570-014-0367-3.
[4] FAROUK R, EL-KHARADLY E A, ELWAHY A H M, et al. Synthesis of new reactive dyes containing commercial UV-absorbers with enhanced simultaneous dyeing and anti-UV properties for cotton fabric[J]. Journal of the Indian Chemical Society, 2021, 98(2): 100022. DOI: 10.1016/j.jics.2021.100022.
[5] OTHMAN N H, ISMAIL M C, MUSTAPHA M, et al. Graphene-based polymer nanocomposites as barrier coatings for corrosion protection[J]. Progress in Organic Coatings, 2019, 135: 82-99. DOI: 10.1016/j.porgcoat.2019.05.030.
[6] ZHOU Y Y, MA Y B, LI X L, et al. Tunable rGO network in polymer coating for enhancing barrier property[J]. Materials Research Bulletin, 2020, 122: 110648. DOI: 10.1016/j.materresbull.2019.110648.
[7] WANG Z G, LIU J B, HAO X, et al. Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene[J]. New Journal of Chemistry, 2020, 44(31): 13377-13381. DOI: 10.1039/d0nj02105a.
[8] LEE S P, ALI G A M, HEGAZY H H, et al. Optimizing reduced graphene oxide aerogel for a supercapacitor[J]. Energy & Fuels, 2021, 35(5): 4559-4569. DOI: 10.1021/acs.energyfuels.0c04126.
[9] BHATTACHARJEE S, MACINTYRE C R, WEN X Y, et al. Nanoparticles incorporated graphene-based durable cotton fabrics[J]. Carbon, 2020, 166: 148-163. DOI: 10.1016/j.carbon.2020.05.029.
[10] JOHNSON A P, GANGADHARAPPA H V, PRAMOD K. Graphene nanoribbons: a promising nanomaterial for biomedical applications[J]. Journal of Controlled Release, 2020, 325: 141-162. DOI: 10.1016/j.jconrel.2020.06.034.
[11] 毛芳芳,庞锦英,李建鸣,等.Fe3O4/氧化石墨烯复合纳米粒子的制备及其体外毒性评价[J].广西师范大学学报(自然科学版), 2018, 36(1): 112-120. DOI: 10.16088/j.issn.1001-6600.2018.01.016.
[12] BIE C B, YU H G, CHENG B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Advanced Materials, 2021, 33(9): e2003521. DOI: 10.1002/adma.202003521.
[13] NEELGUND G M, OKI A. ZnO conjugated graphene: an efficient sunlight driven photocatalyst for degradation of organic dyes[J]. Materials Research Bulletin, 2020, 129: 110911. DOI: 10.1016/j.materresbull.2020.110911.
[14] BABAAHMADI V, ABUZADE R A, MONTAZER M. Enhanced ultraviolet-protective textiles based on reduced graphene oxide-silver nanocomposites on polyethylene terephthalate using ultrasonic-assisted in-situ thermal synthesis[J]. Journal of Applied Polymer Science, 2022, 139(21): 52196. DOI: 10.1002/app.52196.
[15] WANG D, MA J Z, LIU J J, et al. Intumescent flame-retardant and ultraviolet-blocking coating screen-printed on cotton fabric[J]. Cellulose, 2021, 28(4): 2495-2504. DOI: 10.1007/s10570-020-03669-7.
[16] 周福芹, 张志斌,杨海峰. 石墨烯改性棉织物的制备及其抗紫外、抗菌性能[J].印染助剂, 2019, 36(11): 16-19.
[17] GAO S W, DONG X L, HUANG J Y, et al. Co-solvent induced self-roughness superhydrophobic coatings with self-healing property for versatile oil-water separation[J]. Applied Surface Science, 2018, 459: 512-519. DOI: 10.1016/j.apsusc.2018.08.041.
[18] MAHIUDDIN M, OCHIAI B. Lemon juice assisted green synthesis of reduced graphene oxide and its application for adsorption of methylene blue[J]. Technologies, 2021, 9(4): 96.
[19] TISSERA N D, WIJESENA R N, PERERA J R, et al. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating[J]. Applied Surface Science, 2015, 324: 455-463. DOI: 10.1016/j.apsusc.2014.10.148.
[20] DASHAIRYA L, ROUT M, SAHA P. Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation[J]. Advanced Composites and Hybrid Materials, 2018, 1(1): 135-148. DOI: 10.1007/s42114-017-0019-9.
[21] GUO F, WEN Q Y, PENG Y B, et al. Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(41): 21866-21874. DOI: 10.1039/c7ta05599d.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Zhengchun. Research Progress of Complementary Sequences[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 1 -16 .
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1 -18 .
[3] YANG Shenglong, MU Qingchuang, ZHANG Zhihua, LIU Kui. Technical Progress in Recovery and Utilization of Spent Lithium-ion Batteries[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 19 -26 .
[4] LI Kangliang, QIU Caixiong, HE Shuang, HUANG Chunhua, WU Guanyi. Research Progress of IL-31 in Itch[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 27 -35 .
[5] LU Xumeng, NAN Xinyuan, XIA Sibo. Trajectory Tracking Control Based on Model-Free Coordinate Compensation Integral Sliding Mode Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 36 -48 .
[6] ZHANG Weijian, BING Qichun, SHEN Fuxin, HU Yanran, GAO Peng. Travel Time Estimation Method of Urban Expressway Section[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 49 -57 .
[7] YANG Xiu, WEI Duqu. Chaos Tracking Control of Permanent Magnet Synchronous Motor Based on Single State Variable[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 58 -66 .
[8] ZHAO Yuan, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, CAI Chaobo, JIANG Pinqun. Design of a Novel Current-Mirror Operational Transconductance Amplifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 67 -75 .
[9] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76 -85 .
[10] ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86 -97 .