Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (2): 118-123.doi: 10.16088/j.issn.1001-6600.2022041501

Previous Articles     Next Articles

Strongly Quasinil Quasi-clean Rings and Quasi-polar Rings

YIN Chuang, HU Ao, TANG Gaohua*   

  1. School of Sciences, Beibu Gulf University, Qinzhou Guangxi 535011, China
  • Received:2022-04-15 Revised:2022-05-26 Online:2023-03-25 Published:2023-04-25

Abstract: Let R be a ring. An elemente in R is called a quasi-idempotent if there is a central unit k of R such that e2=ke. If for every element a of R, there exists a quasi-idempotent e∈R and a quasinilpotent q∈Rqnil such that e∈comm2(a) and a=e+q,then R is called a strongly quasinil quasi-clean ring. If for every element a of R, there exists a quasi-idempotent e∈R such that e∈comm2(a),a+e∈U(R) and ae∈Rqnil,then R is called a quasi-quasi-polar ring. In this paper, it is proved that the quasi-quasi-polar ring and quasi-polar ring are equivalent; every strongly nil quasi-clean ring is a strongly quasinil quasi-clean ring; and every strongly quasinil quasi-clean ring is a quasi-polar ring. The inverses are not hold.

Key words: quasi-idempotent, strongly quasinil clean ring, quasi-quasi-polar ring, strongly quasinil quasi-clean ring, quasi-polar ring

CLC Number: 

  • O153.3
[1] HARTE R E. On quasinilpotents in rings[J]. Panamerican Mathematical Journal, 1991, 1(1): 10-16.
[2] HARTE R. Invertibility and singularity for bounded linear operations[M].New York:Marcel Dekker, 1988:251.
[3] KOLIHA J J, PATRICIO P. Elements of rings with equal spectral idempotents [J]. Journal of the Australian Mathematical Society, 2002, 72(1): 137-152.
[4] CUI J, CHEN J L. When is a 2×2 matrix ring over a commutative local ring quasi-polar?[J]. Commutations in Algebra, 2011, 39(9): 3212-3221.
[5] YING Z L, CHEN J L. On quasipolar rings[J]. Algebra Colloquium, 2012, 19(4): 683-692.
[6] CUI J, CHEN J L. Characterizations of quasipolar rings[J]. Communications in Algebra, 2013, 41(9): 3207-3217.
[7] HUANG Q H, TANG G H, ZHOU Y Q. Quasipolar property of generalized matrix rings [J]. Communications in Algebra, 2014, 42(9): 3883-3894.
[8] 何亚茹,陈焕艮.关于J-polar环[J]. 杭州师范大学学报(自然科学版),2018,17(3): 286-292.
[9] 何亚茹,陈焕艮. 一类三阶矩阵环的quasipolar性质[J]. 杭州师范大学学报(自然科学版), 2019, 18(3): 300-304,328.
[10] 钱霞丽. 形式矩阵环上quasipolar元的研究[D]. 长沙:湖南师范大学,2020.
[11] CUI J, YIN X B. A generalization of strongly nil clean rings[J]. Algebra Colloquium, 2018, 25(4): 585-594.
[12] 汪慧星. 强拟诣零clean环[J]. 数学进展, 2019, 48(1): 53-60.
[13] 胡蝶,殷晓斌,沙玲玉.交换局部环上的强拟诣零clean 2×2矩阵[J]. 数学杂志, 2021, 41(4): 311-315.
[14] TANG G H, SU H D, YUAN P Z. Quasi-clean rings and strongly quasi-clean rings[J]. Communications in Contemporary Mathematics, 2021: 2150079.
[15] TANG G H,ZHOU Y Q. Nil G-cleanness and strongly nil G-cleanness of rings[J]. Journal of Algebra and Its Applications, 2022, 21(4): 2250077.
[1] ZHAO Shouxiang, TANG Gaohua, NAN Jizhu. Properies of Quasi-Zero-Divisor Graphs of Full Matrix Rings over Zm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 116-121.
[2] LIANG Chunmei, WANG Fanggui, WU Xiaoying. Graded Simple Injective Modules and Their Characterization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 113-120.
[3] WEI Yangjiang, LIANG Yiyao, TANG Gaohua, SU Leilei, CHEN Weining. Cubic Mapping Graphs on the Quotient Ringsof the Gaussian Integer Rings of Modulo n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 53-61.
[4] TANG Gaohua,LI Yu, WU Yansheng. Properties of Zero-divisor Graph of Group Ring Zn[i]G [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 109-115.
[5] GUO Shu-feng, XIE Guang-ming, YI Zhong. Properties of Zero-divisor Graphs of Group Rings ZnG [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 68-75.
[6] WEI Yin-hu, PANG Gui-xi, WU Jiao, XIE Guang-ming. Invariant Gauss Extensions in Q(K G) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 55-57.
[7] TANG Gao-hua, SU Hua-dong, YI Zhong. Structure of the Unit Group of Zn[i] [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(2): 38-41.
[8] XIE Guang-ming, LIU Feng, WEI Chun-hao. Graded Maps Over Q and Graded Extensions of Type (e) in K[Q,σ] [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(2): 42-46.
[9] QIN Qing-ling, YI Zhong, HUANG Yi-fei. Zero-Divisor Graph of Group Ring ZnS3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(4): 54-57.
[10] HUANG Yi-fei, YI Zhong, QIN Qing-ling. Zero-divisor Graph of Group Ring ZnD4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 15-20.
[11] GUO Shufeng , XIE Guangming, YI Zhong. Properties of Zero-divisor Graphs of Idealizations of Group Rings ZnG [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 66-71.
[12] TANG Gaohua, WU Yansheng, ZHANG Hengbin, LI Yu. Strong 2-sum Property of Local Rings and Their Extensions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Zhengchun. Research Progress of Complementary Sequences[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 1 -16 .
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1 -18 .
[3] YANG Shenglong, MU Qingchuang, ZHANG Zhihua, LIU Kui. Technical Progress in Recovery and Utilization of Spent Lithium-ion Batteries[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 19 -26 .
[4] LI Kangliang, QIU Caixiong, HE Shuang, HUANG Chunhua, WU Guanyi. Research Progress of IL-31 in Itch[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 27 -35 .
[5] LU Xumeng, NAN Xinyuan, XIA Sibo. Trajectory Tracking Control Based on Model-Free Coordinate Compensation Integral Sliding Mode Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 36 -48 .
[6] ZHANG Weijian, BING Qichun, SHEN Fuxin, HU Yanran, GAO Peng. Travel Time Estimation Method of Urban Expressway Section[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 49 -57 .
[7] YANG Xiu, WEI Duqu. Chaos Tracking Control of Permanent Magnet Synchronous Motor Based on Single State Variable[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 58 -66 .
[8] ZHAO Yuan, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, CAI Chaobo, JIANG Pinqun. Design of a Novel Current-Mirror Operational Transconductance Amplifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 67 -75 .
[9] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76 -85 .
[10] ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86 -97 .